

Recent developments of the multiscale alignment ensemble filtering framework

Yue (Michael) Ying

In collaboration with Jeff Anderson and Laurent Bertino

NCDA internal seminar, Sep 29, 2022

Motivation

Why do we need multiscale alignment DA?

- Localization: longer radius of influence for larger scales
- Alignment: use information at large scales to reduce position errors at small scales
- Observation information content: representation errors from scale mismatch
- Computational cost: multi-grid treatment, nested high-resolution domains, feature-based DA.

x is the model state, $\mathbf{y} = H(\mathbf{x})$ is the observation prior, \mathbf{y}^o is the real observation.

s indexes the scale components, $\mathbf{x}_s = \mathbf{F}_s \mathbf{x}$, for $s = 1, \dots, N_s$

Scale components

Example: Vortex in the center of a square domain, with some background flow

Localization: larger-scale component uses longer radius of influence

Scale-dependent localization

An earlier example from Ying et al. (2018)

Past literature also showed that a multiscale localization scheme improves performance.

Alignment: nonlinearity (non-Gaussianity) due to position errors

The displacement problem

The multiscale alignment (MSA) method

Example of MSA with $N_s = 5$ (Vortex wind speed plots)

Asymptotic behavior of MSA

Asymptotic behavior of MSA

Asymptotic behavior of MSA

Issue: when background flow errors are incoherent with the vortex position errors (displace to different directions):

- Alignment (warping the mesh with displacement vectors) distorts vortex structure
- Discrete representation of vortex peak wind speed (intensity), alignment "weakens" the vortex if wind maxima end up in between grid points – will go away using Lagrangian meshes.

Observations: inflation to remedy representation errors

Representation error due to scale mismatch

Assimilate observation SCs (a new MSA-O option): Better match with state SCs

Small scales are contaminated more by sampling noises.

Global network: 1000 obs throughout domain Targeted network: only 60 obs near the vortex blue: MSA; red: MSA-O (for N_s =2,3,4 left to right)

16/18

Localization function $\rho_s = \alpha_s \times \text{GC}(\text{ROI}_s)$ Tuning for best α_s and ROIs for s=1 given different N_s .

Contour shows range of parameters that achieve within 1% of the best performance (lowest RMSE).

Concluding remarks

- The new "Multiscale Alignment" method was stress tested in a simple vortex model.
- Some improvements are made: observation SCs; localization tuning for cross-scale updates
- · Deviation from coherence assumption: what to do?
- There are always more challenges in real application:
 3D alignment, balance after update, time dimension, model doesn't generate the feature at all...

