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Data assimilation with generic 
constraints

• Physical constraints ubiquitous in practical data assimilation (DA) problems

• Approaches to handling generic constrained DA problems seemingly under-developed, 
especially in the context of ensemble DA. Some noticed problems include:

- often considering equality or inequality constraints, but not both

- difficulty in dealing with nonlinear constraints

- applicability to large-scale problems

• The current work presenting a class of constrained ensemble DA algorithms with the 
potential to narrow the above noticed gaps

• These constrained DA algorithms derived from the generalized iterative ensemble smoother  
(GIES)



Overview of the generalized iterative 
ensemble smoother (GIES)

GIES: finding an ensemble of models 𝑚𝑗
𝑎 that solves the following  generalized minimum-

average-cost (GMAC) problem:
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Data mismatch term 
Regularization term 



Overview of a generalized iterative 
ensemble smoother (GIES)

Umbrella update formula of the GIES: 

mj
a = 𝑚𝑗

b + 𝑆𝑚 𝑀𝐷 ഥ𝑚𝑏 + 𝛾𝑀𝑅 𝑚𝑗
b, ഥ𝑚𝑏

−1
𝑆𝑇∘𝑔
𝑇 ∇𝐷[𝑇 𝑑𝑜 − 𝑇(𝑔 𝑚𝑗

𝑏 )]

Details of the GIES available in our previous work*:

*Luo, X. (2021). Novel iterative ensemble smoothers derived from a class of generalized cost 
functions. Computational Geosciences, 25(3), 1159-1189.



GIES extended to other problems

• Allowing us to tackle certain problems that were previously cumbersome, if 
not impossible, to handle

• Example: data assimilation with soft constraints (DASC)



GIES for DASC problems
Problem statement

• Available sources of information:

➢Reservoir simulator: 𝑑𝑠𝑖𝑚 = 𝑔 𝑚 for a reservoir model 𝑚

➢Equality constraints: 𝑓𝑒𝑞 𝑚 = 0

➢Inequality constraints: ℎ𝑖𝑛 𝑚 ≤ 0

• Constraints not necessarily strictly satisfied (hence the name “soft constraints”)



GIES for DASC problems

DASC as an optimization problem

• In the DASC problem, constraints incorporated in the data mismatch term, e.g.,

𝐷 𝑇 𝑑𝑜 − 𝑇 𝑔 𝑚 =
1

2
𝑑𝑜 − 𝑔 𝑚

𝑇
𝐶𝑑
−1 𝑑𝑜 − 𝑔 𝑚 + 𝛼 𝐷𝑒𝑞 0 − 𝑓𝑒𝑞 𝑚 + 𝛽 𝐷𝑖𝑛(0 − ℎ𝑖𝑛 𝑚 )

➢𝐷𝑒𝑞 and 𝐷𝑖𝑛: distance metrics for equality and inequality constraints, respectively

➢ 𝛼 and 𝛽: relative weights

• Regularization term 𝑅[Γ 𝑚 − Γ(𝑚𝑏)] =
1

2
𝑚 −𝑚𝑏 𝑇

𝐶𝑚
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GIES for DASC problems
DASC as an optimization problem

Applying the umbrella update formula of the GIES to the above choices:

mj
a = 𝑚𝑗

b + 𝐾 𝑆𝑔
𝑇𝐶𝑑

−1 𝑑𝑜 − 𝑔 𝑚𝑗
b + 𝛼𝑆feq

𝑇 ∇𝐷𝑒𝑞 0 − 𝑓𝑒𝑞 𝑚𝑗
b + 𝛽𝑆ℎ𝑖𝑛

𝑇 ∇𝐷𝑖𝑛 0 − ℎ𝑖𝑛 𝑚𝑗
b

𝐾 ≡ 𝑆𝑚 𝑆g
𝑇 𝐶𝑑

−1 𝑆g + 𝛼𝑆feq
𝑇 ∇𝐷𝑒𝑞

2 0 − 𝑓𝑒𝑞 ഥ𝑚𝑏 𝑆feq + 𝛽𝑆ℎ𝑖𝑛
𝑇 ∇𝐷𝑖𝑛

2 0 − ℎ𝑖𝑛 ഥ𝑚𝑏 𝑆hin + 𝛾𝐼
−1

➢ Red: impact of equality constraints on model update

➢ Green: impact of inequality constraints on model update

➢ 𝛼 = 𝛽 = 0 ⇒ original IES algorithm 

Referred to as GIES-DASC algorithm hereafter*

*Luo, X., & Cruz, W. C. (2022). Data assimilation with soft constraints (DASC) through a generalized 

iterative ensemble smoother. Computational Geosciences, 26(3), 571-594.



GIES for DASC problems
Features of the GIES-DASC algorithm

mj
a = 𝑚𝑗

b + 𝐾 𝑆𝑔
𝑇𝐶𝑑

−1 𝑑𝑜 − 𝑔 𝑚𝑗
b + 𝛼𝑆feq

𝑇 ∇𝐷𝑒𝑞 0 − 𝑓𝑒𝑞 𝑚𝑗
b + 𝛽𝑆ℎ𝑖𝑛

𝑇 ∇𝐷𝑖𝑛 0 − ℎ𝑖𝑛 𝑚𝑗
b

𝐾 ≡ 𝑆𝑚 𝑆g
𝑇 𝐶𝑑

−1 𝑆g + 𝛼𝑆feq
𝑇 ∇𝐷𝑒𝑞

2 0 − 𝑓𝑒𝑞 ഥ𝑚𝑏 𝑆feq + 𝛽𝑆ℎ𝑖𝑛
𝑇 ∇𝐷𝑖𝑛

2 0 − ℎ𝑖𝑛 ഥ𝑚𝑏 𝑆hin + 𝛾𝐼
−1

➢ Closed-form update formula, bearing a similar structure to the original IES algorithm

➢ Able to simultaneously handle nonlinear equality and inequality constraints in general

➢ Derivative-free with respect to the constraint-systems (i.e., no gradient of 𝑓𝑒𝑞 or ℎ𝑖𝑛 with respect to 𝑚)

➢ User-defined distance metrics 𝐷𝑒𝑞 and 𝐷𝑖𝑛 => ∇𝐷𝑒𝑞, ∇𝐷𝑖𝑛
, ∇𝐷𝑒𝑞

2 and ∇𝐷𝑖𝑛

2 having known analytical forms   



GIES for DASC problems
Localization and handling big model/data size in the GIES-DASC algorithm

mj
a = 𝑚𝑗

b + 𝐾 𝑆𝑔
𝑇𝐶𝑑

−1 𝑑𝑜 − 𝑔 𝑚𝑗
b + 𝛼𝑆feq

𝑇 ∇𝐷𝑒𝑞 0 − 𝑓𝑒𝑞 𝑚𝑗
b + 𝛽𝑆ℎ𝑖𝑛

𝑇 ∇𝐷𝑖𝑛 0 − ℎ𝑖𝑛 𝑚𝑗
b

𝐾 ≡ 𝑆𝑚 𝑆g
𝑇 𝐶𝑑

−1 𝑆g + 𝛼𝑆feq
𝑇 ∇𝐷𝑒𝑞

2 0 − 𝑓𝑒𝑞 ഥ𝑚𝑏 𝑆feq + 𝛽𝑆ℎ𝑖𝑛
𝑇 ∇𝐷𝑖𝑛

2 0 − ℎ𝑖𝑛 ഥ𝑚𝑏 𝑆hin + 𝛾𝐼
−1

• Correlation-based localization applied to innovation/gradient projected onto the ensemble 
sub-space

• Proper choice of 𝐷𝑒𝑞 and 𝐷𝑖𝑛 => diagonal Hessian matrices ∇𝐷𝑒𝑞
2 and ∇𝐷𝑖𝑛

2 (useful for 

large-scale problems)

• More details available in: 

Luo, X., & Cruz, W. C. (2022). Data assimilation with soft constraints (DASC) through a generalized iterative 
ensemble smoother. Computational Geosciences, 26(3), 571-594.



2D case study

Experimental settings

Model information 45 x 45 (two phases: oil and water); 
8 producers (control mode: fluid rates) + 8 injectors (control mode: fluid 

rates)
Uncertain parameters: PERMX

Reference model PERMX: 500md (shale) and 10000 md (sand)

Production data used for 
history matching (history)

Oil and water rates from 8 producers + BHP from 8 injectors;
History period: 0 – 1900 days

Production data used for 
cross-validation (forecast)

Oil and water rates from 8 producers + BHP from 8 injectors; Forecast period: 
1900 – 3800 days

HM algorithm Ensemble size: 100 
Ordinary IES  vs. GIES for DASC problems
Correlation based adaptive localization

Reference model (truth)



2D case study

• Inequality-constraints: 100 md <= PERMX <= 15000 md on each active gridblock
NB: ℎ𝑖𝑛 𝑚 = 100 −m;m − 15000 ≤ 0

• Choice of distance metric (barrier function): 
𝐷𝑖𝑛 𝒙 = − log 𝒙 𝑇𝟏 at 𝒙 = 𝟎 − 𝒉𝒊𝒏 𝒎

NB: if ℎ𝑖𝑛 𝑚 → 0, then  − log 0 − ℎ𝑖𝑛 𝑚
𝑇
𝟏 → +∞

• The gradient ∇𝐷𝑖𝑛(𝑥) and the Hessian ∇𝐷𝑖𝑛
2 (𝑥) having analytic forms*

• Diagonal Hessian ∇𝐷𝑖𝑛
2 (𝑥), useful for large-scale problems (as in the 3D case later)*

*Luo, X., & Cruz, W. C. (2022). Data assimilation with soft constraints (DASC) through a generalized iterative 

ensemble smoother. Computational Geosciences, 26(3), 571-594.



2D case study

• Equality-constraint system: see left-hand side

• Choice of distance metric (“channel” function): 
𝐷𝑒𝑞 𝒙 = log |𝒙| 𝑇𝟏 at 𝒙 = 𝟎 − 𝒇𝒆𝒒 𝒎

NB: log |0 − 𝑓𝑒𝑞 𝑚 |
𝑇
𝟏 → −∞ if 𝑓𝑒𝑞 𝑚 → 0

• No need to evaluate the gradient of a histogram w.r.t 

PERMX

• The gradient ∇𝐷𝑒𝑞(𝑥) and the Hessian ∇𝐷𝑒𝑞
2 (𝑥)

having analytic forms*

• Diagonal Hessian ∇𝐷𝑒𝑞
2 (𝑥)

*Luo, X., & Cruz, W. C. (2022). Data assimilation with soft constraints (DASC) through a generalized iterative 

ensemble smoother. Computational Geosciences, 26(3), 571-594.

𝑓𝑒𝑞 𝑚 computes the differences 

between the histogram of the ground 

truth and that of an estimated reservoir 

model, bin by bin



2D case study

Nomenclature

• O-IES: Original IES

• C-GIES-EQ: GIES-DASC algorithm 

with only equality constraint(s)

• C-GIES-IN: GIES-DASC algorithm 

with only inequality constraint(s)

• C-GIES-(IN+EQ): GIES-DASC 

algorithm with both equality and 

inequality constraints



3D case study

Grid geometry of the Brugge field

Experimental settings

Model size 139x48x9, with 44550 out of 60048 being 
active gridcells

Parameters to estimate PORO, PERMX, PERMY, PERMZ. Total 
number is 4x44550 = 178,200

Production data (~10 yrs) BHP, OPR, WCT. Total number is 1400 

Constraint system Upper and lower bounds for each parameter 
(as in the 2D case). Dimension of the 
constraint system = 2 x 178,200  = 356,4000

History matching 
algorithm

Ordinary IES  vs. GIES for DASC problems
Correlation based adaptive localization



3D case study

Nomenclature

• O-IES: Original IES

• C-GIES-IN: GIES-DASC algorithm 

with only inequality constraint(s)



Discussion and conclusion

• A class of ensemble DASC algorithms obtained as a special case of the 
umbrella GIES update formula

• Features of the GIES-DASC algorithm
➢ closed-form and close to IES 

➢ simultaneously handling nonlinear equality and inequality constraints

➢ derivative-free 

➢ applicable to large-scale problems

• Better data assimilation performance obtained by the GIES-DASC 
algorithm(s) in both case studies
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