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Objectives

The resolution of observations grows faster than model resolution.

1. Emulating a HR EnKF while running the forecast step with a LR model
2. Reduction of the computational cost of the EnKF
3. Taking advantage of HR observations with a LR model
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Motivation and method
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Motivation and method

EnKF - Super-resolution data assimilation (SRDA)
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Model used

▶Model used: Quasi-geostrophic model
[Sakov and Oke, 2008]

Configuration State size Cost
HR 129×129 C
LR 65×65 C/8
ULR 33×33 C/64

▶Observations:
• True value perturbed by a gaussian noise
of standard deviation 2

• Available every ∆t = 12
• Located along simulated satellite tracks
(black dots on the figures)

• Note the representativeness errors.

Downscaling operator?
▶A simple cubic spline interpolation
▶A neural network
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Training set for the neural network

▶Run one simulation of the HR model.
▶Assemble matching pairs of (U)LR and HR states: (xL,k, xH,k)

xH,k−1

MH

xH,k

xL,k−1

ML

xL,k

U

U : Upscaling (subsampling
operator)

D: Downscaling (Neural network)

▶Number of pairs: 10,000
▶ 8000 for training / 2000 for
validation
▶Architecture of the enhanced
deep super-resolution network
(EDSR) [Lim et al., 2017]
▶ Training: minimization of the
mean absolute error
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Downscaling performance

▶ Illustration with one typical sample

red lines: Contour of the true HR state

8



Model error correction

▶ Eddy propagation slower in the LR model
▶ The NN is smart enough to learn that
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Super-resolution data assimilation performance

▶ Twin experiments with 500 assimilation cycles
▶ Sensitivity analysis to tune the optimal localisation and inflation
▶ Strong improvement irrespective of ensemble size
▶Method able to predict uncertainties, same reliability as the EnKF

Performance with LR model
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Computing performance - Total CPU time in Python

▶With 25 members sequentially
▶ Same inflation and localization coefficients
▶ SRDA holds its promise: good value for the cost
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Reformulating the SRDA as a LR scheme

▶We can reformulate the SRDA into LR EnKF equations so that we can
separate the contributions from:

1. the model error correction;
2. the super-resolution observation operator (representativeness).
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Hybrid covariance SRDA

Hybrid covariance SRDA (Hybrid SRDA)
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Hybrid covariance SRDA

The hybrid covariance matrix Pf
h is a linear combination of:

▶Pf
HR computed from the HR ensemble;

▶Pf
LR computed from the LR ensemble downscaled to the HR grid:

Pf
h = (1− α)Pf

HR + αPf
LR, 0 ≤ α ≤ 1. (1)

▶α = 0 full HR case→ EnKF-HR
▶α = 1 full LR case→ EnKF-LR
▶downscaling method ”cubic spline interpolation”

⇒ [Rainwater and Hunt, 2013].
▶Results computed over the HR ensemble unless otherwise stated.
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DA experiments with fixed ensemble size: influence of α - LR case

▶ Twin experiments with 500 assimilation cycles;
▶ (NH,NL) = (5, 10) with localization L = 5 and inflation λ = 1.05
▶α = 0, 0.1, 0.2, . . . , 1
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▶ Limited influence on the RMSE;
▶ Strong influence on the spread of the ensembles;
▶No convergence for α = 0, and α = 1 (depends on L, λ and (NH,NL))
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DA experiments with fixed ensemble size: influence of α - ULR case
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▶ Same conclusions as in the LR case.
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Intercomparison of SRDA, hybrid-SRDA, and EnKF - LR case

For fixed parameters L = 5, λ = 1.05, α = 0.6, (NH,NL) = (5, 10), and N = 15:

▶ same computational time of assimilation;
▶ the hybrid-SRDA outperforms the SRDA-NN;
▶ the EnKF outperforms the hybrid-SRDA.
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Computational effectiveness

▶ Same inflation and localization coefficients: λ = 1.05 and L = 5;
▶N = 15 for the EnKF and the SRDA;
▶ (NH,NL) = (5, 10) for the hybrid-SRDA.
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▶ The method is cost effective if it is under the black dashed line;
▶ The method improves the ratio ”Error increase/time reduction” if it is
under the black dashed line compared to the SRDA-NN.
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Trade off HR/LR ensemble sizes experiments

Trade off: 1 HR member ≈ 8 LR members (integration time)

Design of the experiments:
▶ Twin experiments with 500 assimilation cycles;
▶ EnKF-HR with NH = 10 members, SRDA-NN with NL = 80 members;
▶Hybrid-SRDA NN with (NH,NL) = (2, 64), (3, 56), . . . , (9, 8);
▶Optimal localization, inflation and hybridization coefficients.

(2, 64) (3, 56) (4, 48) (5, 40) (6, 32) (7, 24) (8, 16) (9, 8)
(NH,NL) members

0.79

0.80

0.81

0.82

0.83

0.84

RM
SE

Hybrid-SRDA NN
EnKF
SRDA-NN

22



Trade off HR/LR ensemble sizes experiments

Trade off: 1 HR member ≈ 8 LR members (integration time)

Design of the experiments:
▶ Twin experiments with 500 assimilation cycles;
▶ Computational resources of running ≈ 5, 7, . . . , 15 HR members;
▶Optimal localization, inflation and hybridization coefficients.
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Characterization of the covariance functions

Characterization of the covariance functions with their variance and
correlation length scale:

Pf = ΣCfΣT (2)
▶Cf background error correlation matrix;
▶Σ diagonal matrix of the square root of the variance of Pf.

Parabolic based approximation of the
correlation length scale:

Lp =
δx√

−2 ln (ρ(δx))
(3)

Source: [Pannekoucke et al., 2008]
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▶Point A: high temporal and spatial
variability;
▶Point B: passing of eddies;
▶Point C: small temporal and spatial
variability.
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Characterization of the covariance functions

▶ Twin experiments with 500 assimilation cycles;
▶ Estimating the variance and the horizontal/vertical correlation length
scales at points A, B, C;
▶Results averaged over the whole period.
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▶ The hybrid-SRDA cubic does not provide a correct modelling of Pf; 26



Characterization of the covariance functions

▶ Twin experiments with 500 assimilation cycles;
▶Respective influence of the model error correction and super-resolution
observation operator on the variance and the correlation length scales.
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Conclusions/perspectives

Main results
▶ SRDA nearly as accurate as the EnKF with HR model but for a cost close to
the EnKF-LR;
▶ The hybrid-SRDA outperforms the SRDA and performs almost as good as
the EnKF but for a reduced cost;
▶ For limited integration resources the hybrid SRDA systemically
outperforms the EnKF;
▶ The NN can correct systematic differences of eddy propagation caused by
the low resolution;
▶ The NN allows for a better representation (on average) of the geometrical
features of the covariance matrix;
▶ The results are stable in time (especially during challenging events);

Perspectives
▶Application to a more realistic (multivariate) model→ project Impetus;
▶Application restricted to parts of the model domain,
▶Use NN-downscaling for the initialization of HR forecasts.
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SRDA (only!) paper available on Ocean Dynamics!
https://link.springer.com/article/10.1007/
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Setup of the neural network
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Architecture of the enhanced deep super-resolution network
(EDSR) [Lim et al., 2017]



Training of the neural network

Minimize the mean absolute error (MAE):

L(w) =
K∑
k=1

S∑
i=1

|D(xL,k)i − xH,k,i| ,

i: the pixel index
S: size of the state (129×129)
K: size of the training set (K=8000)
w: weights of the neural network (∼ 20, 000)

Training curve



Downscaling performance (2)

▶ Score on the validation dataset



Super-resolution data assimilation performance

▶Method able to preserve the reliability

Performance with LR model
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Super-resolution data assimilation performance

Low-resolution error
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Spread/error of the ensemble

Low-resolution spread/error
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Spatial pattern of the variance

Pattern of the variance at assimilation cycles 321
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▶ SRDA NN and hybrid-SRDA NN have same pattern of variance as the EnKF.



Computational effectiveness
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Hybrid covariance SRDA

HR ensemble update
xa

H = xf
H + Kh

(
dH − HHxf

H
)

Aa
H = Af

H − 1
2KhHHAf

H

LR ensemble update (in the HR space)
xa

L→H = xf
L→H + Kh

(
dH − HHxf

L→H
)

Aa
L→H = Af

L→H − 1
2KhHHAf

L→H

where Kh is the hybrid Kalman gain:

Kh = Pf
hHTH

(
HHPf

hHTH + RH

)−1
(4)



The shuffle operator

Qin, Mengjiao, et al. ”Remote Sensing Single-Image Resolution Improvement Using A Deep
Gradient-Aware Network with Image-Specific Enhancement.” Remote Sensing 12.5 (2020): 758.
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