Multiscale Model Diagnostic

Trond Mannseth

Model diagnostic of prior predictive distribution ... prior predictive distribution

$$x_e = g(m_e) + \epsilon_e; \quad e = 1, \dots, E$$

g : forward model/simulator

 m_e : prior parameter realization

 ϵ_{e} : error realization

 x_e : (perturbed) prior prediction

... to reduce the risk of unsuccessful data assimilation

Assess if prior predictions are consistent with observed data, that is, if the observed data vector could be a credible realization from the prior predictive distribution

... to reduce the risk of unsuccessful data assimilation

Assess if prior predictions are consistent with observed data, that is, if the observed data vector could be a credible realization from the prior predictive distribution

If not consistent, (part of) the modeling setup should be changed before data assimilation is performed

... to reduce the risk of unsuccessful data assimilation

Assess if prior predictions are consistent with observed data, that is, if the observed data vector could be a credible realization from the prior predictive distribution

If not consistent, (part of) the modeling setup should be changed before data assimilation is performed

Coverage of individual observations by the ensemble of prior predictions is not sufficient for consistency, as coverage does not take into account trends and shapes

The task

Could the black curve be a credible realization from the prior predictive distribution?

Compare prior predictions and data on multiple scales of variation

Multiscale model diagnostic of prior predictive distribution

Compare prior predictions and data on multiple scales of variation

The method utilizes scalar products of prior predictions and data with certain multiscale vectors

$$\begin{array}{rcl} \chi_{k,e} & = & h_k^T x_e \\ \delta_k & = & h_k^T d \end{array}$$

 x_e : (recall) prior prediction

d: data

 h_k : multiscale vector on scale k

Multiscale model diagnostic of prior predictive distribution

Multiscale vectors (the four vectors with the longest characteristic length)

Multiscale model diagnostic of prior predictive distribution Application to real data

With real data, there is only a single data vector available

$$\delta_k = h_k^T d$$

Multiscale model diagnostic of prior predictive distribution Application to real data and method assessment

With real data, there is only a single data vector available

$$\delta_k = h_k^T d$$

When assessing the method's applicability and robustness on toy problems, I will consider an ensemble of data realizations to avoid effects associated with a particular data vector

$$\delta_{k,e} = h_k^T d_e$$

Empirical means, $M(\delta_k)$, and standard deviations, $S(\delta_k)$, will then be available for comparison with $M(\chi_k)$ and $S(\chi_k)$

Multiscale model diagnostic of prior predictive distribution

Method assessment on toy problems

Plot explanation

Plot explanation

Plot explanation

Repeat for all e and compute $M(\chi_0)$ and $S(\chi_0)$

Plot explanation

-0.5

6

Plot explanation

Repeat for all e and compute $M\left(\chi_1\right)$ and $S\left(\chi_1\right)$

Plot explanation

Repeat for all e and compute $M(\chi_2)$ and $S(\chi_2)$

Plot explanation, use of colors: prior predictive, data

Example 1 - x_e and d_e from the same distribution

Example 1 - x_e and d_e from the same distribution

Example 1 - x_e and d_e from the same distribution with ensemble size 1000

Example 2

Example 2 - different data means

Example 2 - different data means

Example 3

Example 3 - decreasing data mean

4

-0.5

Example 3 - simplified explanation of behaviour

i

Example 4 - simplified explanation of behaviour

Example 4 - simplified explanation of behaviour

Example 4 - simplified explanation of behaviour

Example 4 - simplified explanation of behaviour

Example 4 - simplified explanation of behaviour

Example 4 - simplified explanation of behaviour

Large standard deviation of $h_k^T v_e$ when characteristic lengths of v_e and h_k are similar

Example 4 - simplified explanation of behaviour

Small standard deviation when characteristic length of v_e is larger than that of h_k

Multiscale model diagnostic of prior predictive distribution

Application to real data

The Norne field

The Norne field

Data from G segment

The Norne field

Data from G segment

Production data from well E4 (wells: black dots on right figure)

The Norne field

Data from G segment

Production data from well E4 (wells: black dots on right figure)

Time-lapse (4-D) impedance data from most of the segment

The Norne field

Data from G segment

Production data from well E4 (wells: black dots on right figure)

Time-lapse (4-D) impedance data from most of the segment

RFT data from wells E4 and F4

Production data - results for well E4

Gas

Production data - results for well E4

Production data - results for well E4

Production data - results for well E4

Production data - results for well E4

Time-lapse impedance data

Time-lapse data are obtained by subtracting data acquired from two surveys over the same study region at different times. The aim is to infer fluid movements and/or pressure changes in the subsurface over this time span, and also to infer flow-related rock properties, such as permeability (fluid conductivity)

Time-lapse impedance data

Time-lapse data are obtained by subtracting data acquired from two surveys over the same study region at different times. The aim is to infer fluid movements and/or pressure changes in the subsurface over this time span, and also to infer flow-related rock properties, such as permeability (fluid conductivity)

Impedance (density \times velocity) data for a subsurface region are obtained by inverting seismic data observed in the sea water or at the sea floor. Hence, they are not really data, but it is common to split the assimilation of time-lapse seismic data into flow-related rock properties this way

Time-lapse impedance data - study region

The major part of the Norne G segment constitutes the study region

Time-lapse impedance data - multiscale vectors

Time-lapse impedance data - time span 2001-2003

Time-lapse impedance data - time span 2001-2003

Time-lapse impedance data - time span 2001-2003 - results

Time-lapse impedance data - time span 2001-2004 - results

Time-lapse impedance data - time span 2001-2006 - results

Application to real data RFT data

RFT (Repeat Formation Tester) data consist of pressure values along the wellbore

Application to real data RFT data

RFT (Repeat Formation Tester) data consist of pressure values along the wellbore

Summary

Multiscale model diagnostic (MMD) discriminates well between realizations from different distributions

Summary

Multiscale model diagnostic (MMD) discriminates well between realizations from different distributions

MMD is straightforward and computationally inexpensive

Summary

Multiscale model diagnostic (MMD) discriminates well between realizations from different distributions

MMD is straightforward and computationally inexpensive

In simplistic situations, MMD gives guidance regarding what changes that are desireable for the prior predictive distribution

Method assessment on toy problems

Example 5 - blockwise varying data mean

Method assessment on toy problems

Example 5 - blockwise varying data mean

4

-0.5

