Multiscale Model Diagnostic

Trond Mannseth

Model diagnostic of prior predictive distribution ... prior predictive distribution

$$x_e = g(m_e) + \epsilon_e; \quad e = 1, \dots, E$$

g : forward model/simulator

 m_e : prior parameter realization

 ϵ_{e} : error realization

 x_e : (perturbed) prior prediction

... to reduce the risk of unsuccessful data assimilation

Assess if prior predictions are consistent with observed data, that is, if the observed data vector could be a credible realization from the prior predictive distribution

... to reduce the risk of unsuccessful data assimilation

Assess if prior predictions are consistent with observed data, that is, if the observed data vector could be a credible realization from the prior predictive distribution

If not consistent, (part of) the modeling setup should be changed before data assimilation is performed

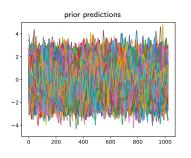
... to reduce the risk of unsuccessful data assimilation

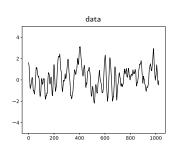
Assess if prior predictions are consistent with observed data, that is, if the observed data vector could be a credible realization from the prior predictive distribution

If not consistent, (part of) the modeling setup should be changed before data assimilation is performed

Coverage of individual observations by the ensemble of prior predictions is not sufficient for consistency, as coverage does not take into account trends and shapes

The task





Could the black curve be a credible realization from the prior predictive distribution?

Compare prior predictions and data on multiple scales of variation

Multiscale model diagnostic of prior predictive distribution

Compare prior predictions and data on multiple scales of variation

The method utilizes scalar products of prior predictions and data with certain multiscale vectors

$$\begin{array}{rcl} \chi_{k,e} & = & h_k^T x_e \\ \delta_k & = & h_k^T d \end{array}$$

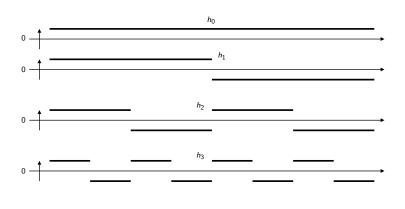
 x_e : (recall) prior prediction

d: data

 h_k : multiscale vector on scale k

Multiscale model diagnostic of prior predictive distribution

Multiscale vectors (the four vectors with the longest characteristic length)



Multiscale model diagnostic of prior predictive distribution Application to real data

With real data, there is only a single data vector available

$$\delta_k = h_k^T d$$

Multiscale model diagnostic of prior predictive distribution Application to real data and method assessment

With real data, there is only a single data vector available

$$\delta_k = h_k^T d$$

When assessing the method's applicability and robustness on toy problems, I will consider an ensemble of data realizations to avoid effects associated with a particular data vector

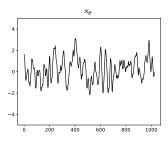
$$\delta_{k,e} = h_k^T d_e$$

Empirical means, $M(\delta_k)$, and standard deviations, $S(\delta_k)$, will then be available for comparison with $M(\chi_k)$ and $S(\chi_k)$

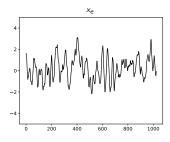
Multiscale model diagnostic of prior predictive distribution

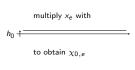
Method assessment on toy problems

Plot explanation

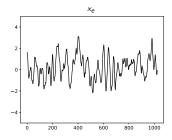


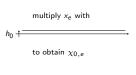
Plot explanation





Plot explanation

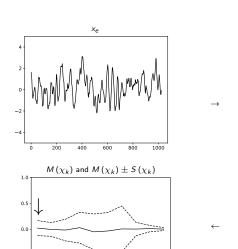




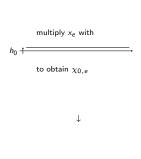
Repeat for all e and compute $M(\chi_0)$ and $S(\chi_0)$

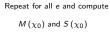
Plot explanation

-0.5

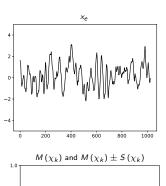


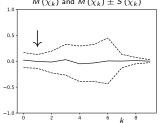
6

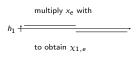




Plot explanation

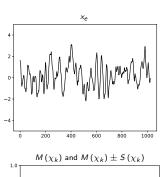


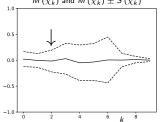


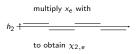


Repeat for all e and compute $M\left(\chi_1\right)$ and $S\left(\chi_1\right)$

Plot explanation

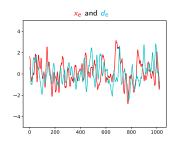


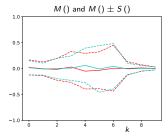




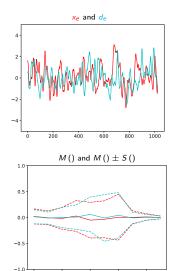
Repeat for all e and compute $M(\chi_2)$ and $S(\chi_2)$

Plot explanation, use of colors: prior predictive, data

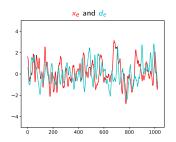


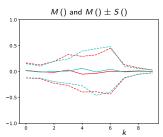


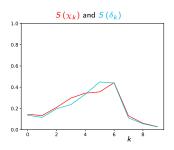
Example 1 - x_e and d_e from the same distribution



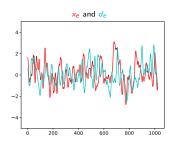
Example 1 - x_e and d_e from the same distribution

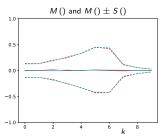


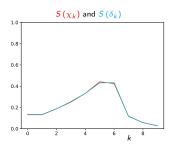




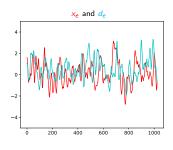
Example 1 - x_e and d_e from the same distribution with ensemble size 1000

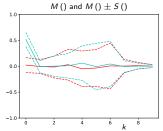




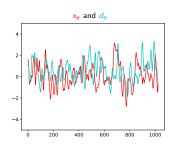


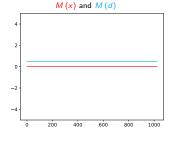
Example 2

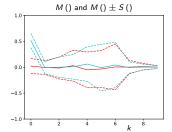




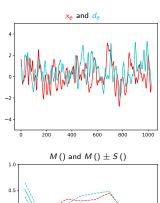
Example 2 - different data means

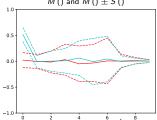


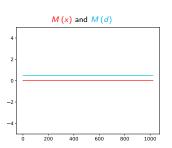


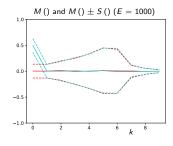


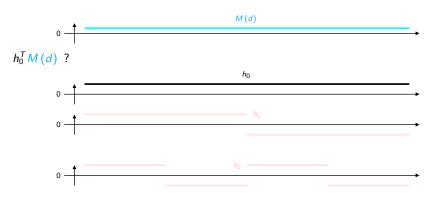
Example 2 - different data means

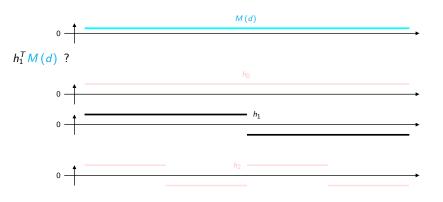


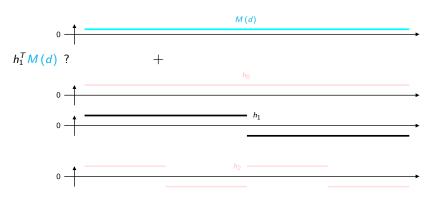


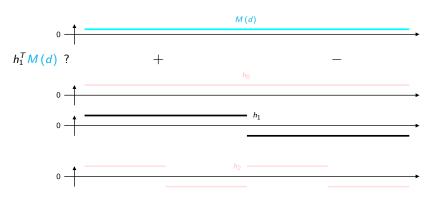


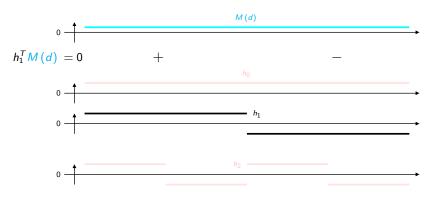


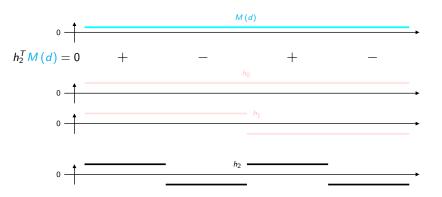




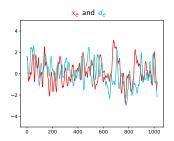


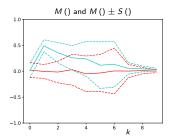


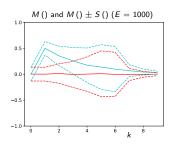




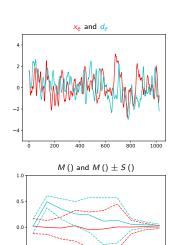
Example 3





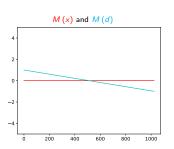


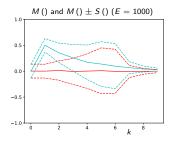
Example 3 - decreasing data mean

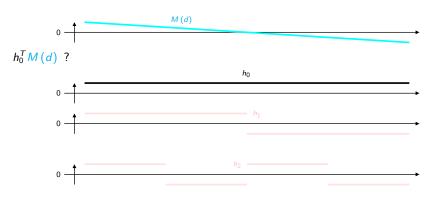


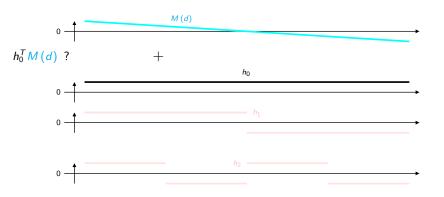
4

-0.5

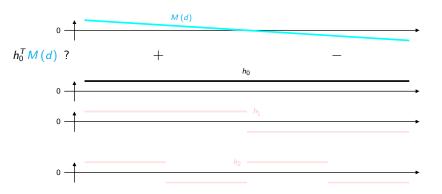




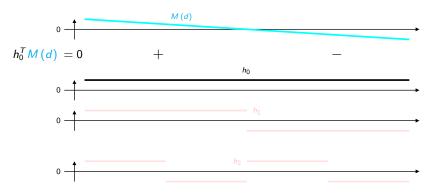


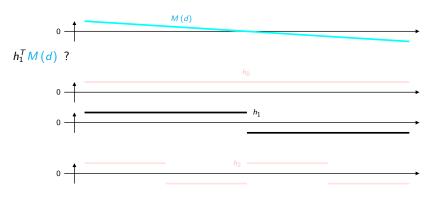


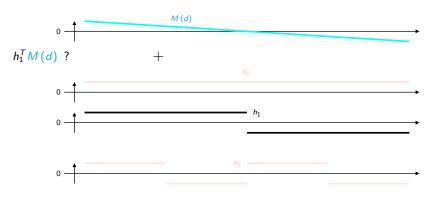
Example 3 - simplified explanation of behaviour

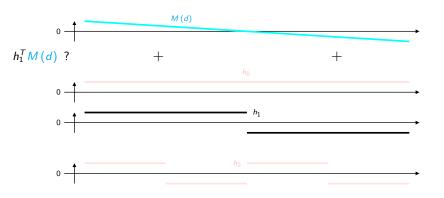


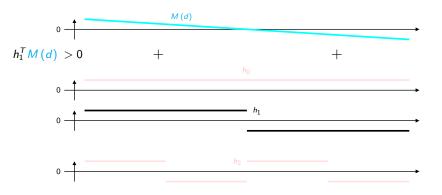
i

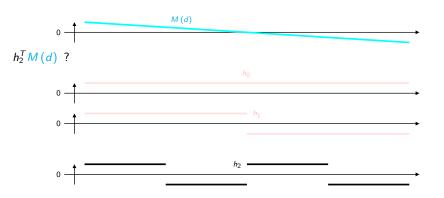


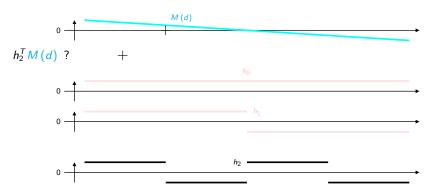


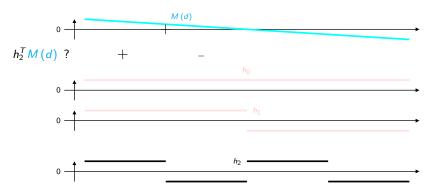


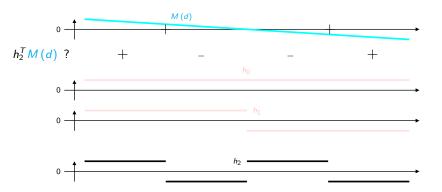


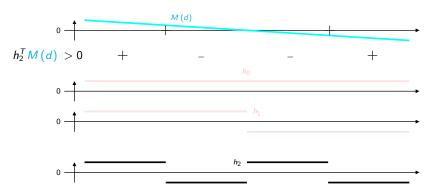


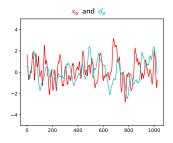


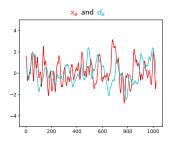


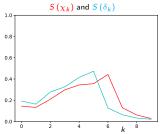


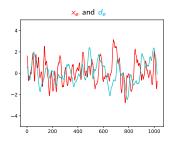


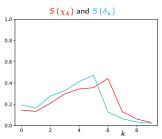


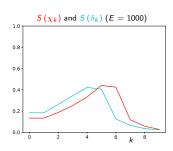






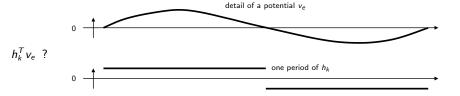




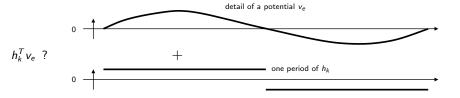


Example 4 - simplified explanation of behaviour

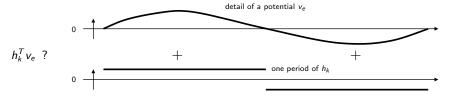
Example 4 - simplified explanation of behaviour



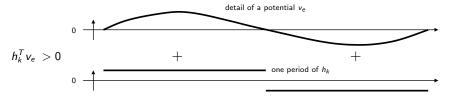
Example 4 - simplified explanation of behaviour

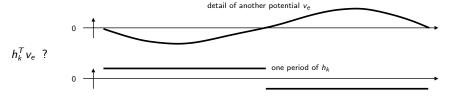


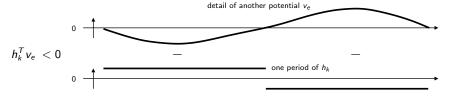
Example 4 - simplified explanation of behaviour



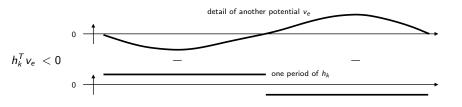
Example 4 - simplified explanation of behaviour



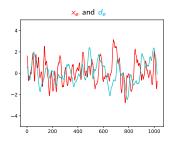


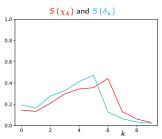


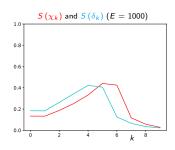
Example 4 - simplified explanation of behaviour

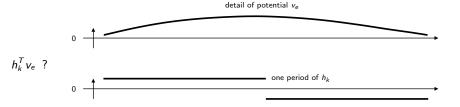


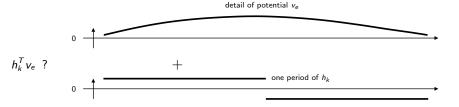
Large standard deviation of $h_k^T v_e$ when characteristic lengths of v_e and h_k are similar

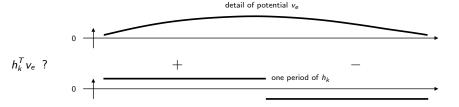


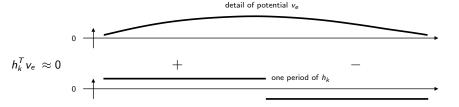




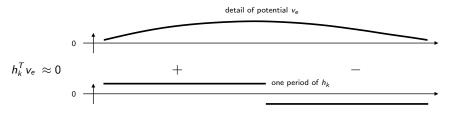








Example 4 - simplified explanation of behaviour

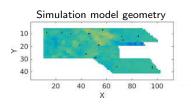


Small standard deviation when characteristic length of v_e is larger than that of h_k

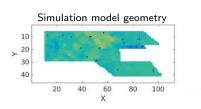
Multiscale model diagnostic of prior predictive distribution

Application to real data

The Norne field



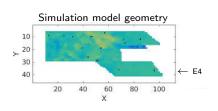
The Norne field



Data from G segment

The Norne field



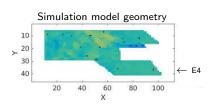


Data from G segment

Production data from well E4 (wells: black dots on right figure)

The Norne field



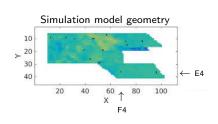


Data from G segment

Production data from well E4 (wells: black dots on right figure)

Time-lapse (4-D) impedance data from most of the segment

The Norne field



Data from G segment

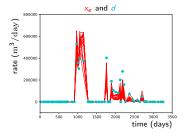
Production data from well E4 (wells: black dots on right figure)

Time-lapse (4-D) impedance data from most of the segment

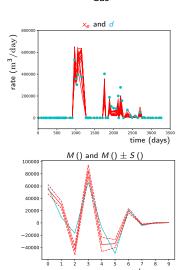
RFT data from wells E4 and F4

Production data - results for well E4

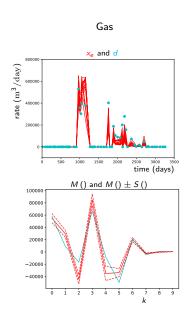
Gas

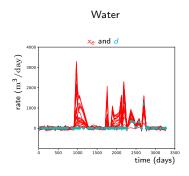


Production data - results for well E4

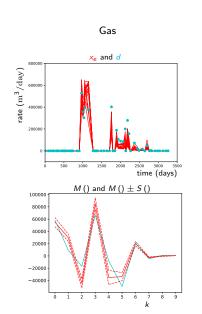


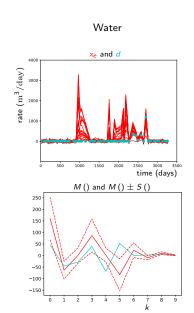
Production data - results for well E4



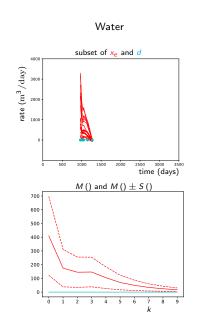


Production data - results for well E4





Production data - results for well E4





Time-lapse impedance data

Time-lapse data are obtained by subtracting data acquired from two surveys over the same study region at different times. The aim is to infer fluid movements and/or pressure changes in the subsurface over this time span, and also to infer flow-related rock properties, such as permeability (fluid conductivity)

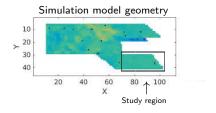
Time-lapse impedance data

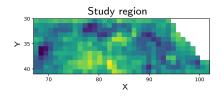
Time-lapse data are obtained by subtracting data acquired from two surveys over the same study region at different times. The aim is to infer fluid movements and/or pressure changes in the subsurface over this time span, and also to infer flow-related rock properties, such as permeability (fluid conductivity)

Impedance (density \times velocity) data for a subsurface region are obtained by inverting seismic data observed in the sea water or at the sea floor. Hence, they are not really data, but it is common to split the assimilation of time-lapse seismic data into flow-related rock properties this way

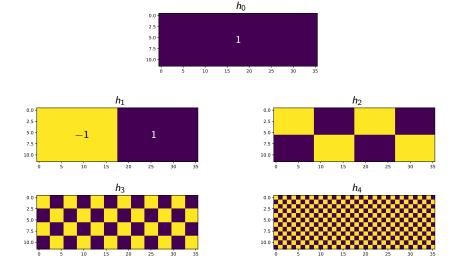
Time-lapse impedance data - study region

The major part of the Norne G segment constitutes the study region

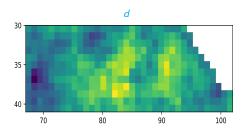




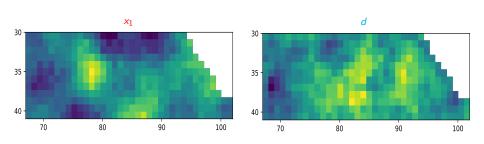
Time-lapse impedance data - multiscale vectors

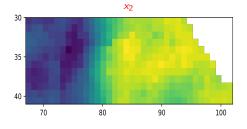


Time-lapse impedance data - time span 2001-2003

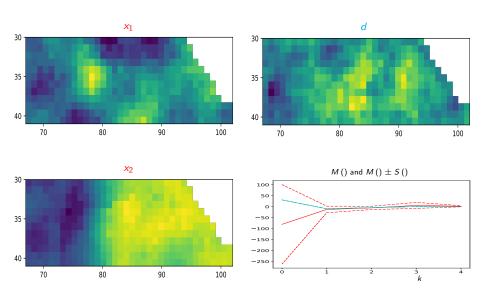


Time-lapse impedance data - time span 2001-2003

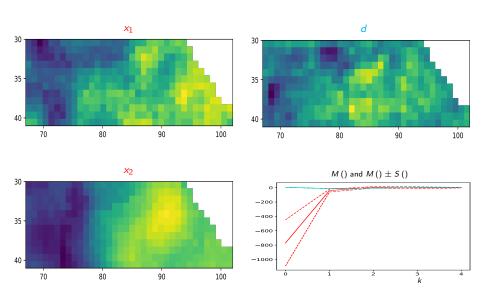




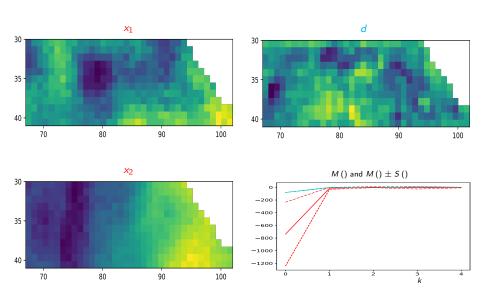
Time-lapse impedance data - time span 2001-2003 - results



Time-lapse impedance data - time span 2001-2004 - results

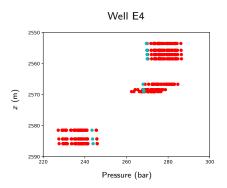


Time-lapse impedance data - time span 2001-2006 - results



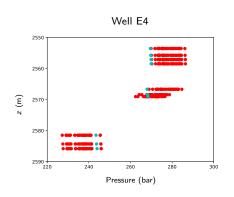
Application to real data RFT data

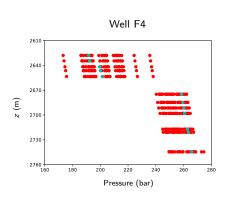
RFT (Repeat Formation Tester) data consist of pressure values along the wellbore

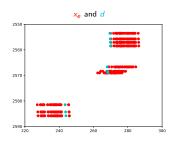


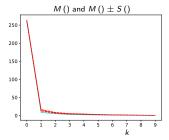
Application to real data RFT data

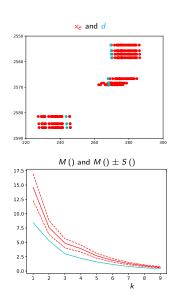
RFT (Repeat Formation Tester) data consist of pressure values along the wellbore

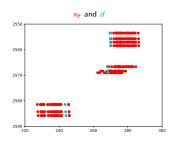


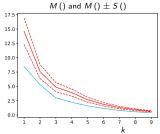


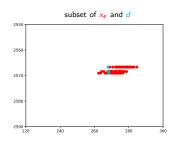


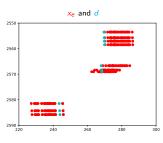


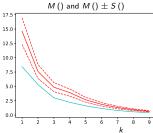


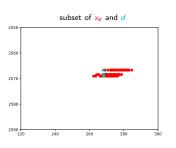


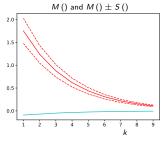


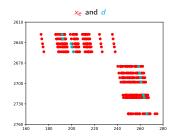


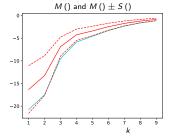


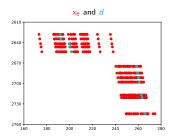


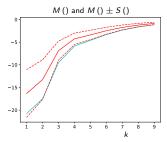


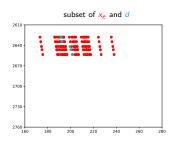


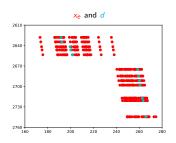


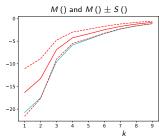


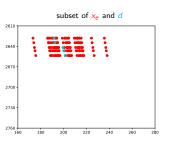


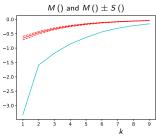












Summary

Multiscale model diagnostic (MMD) discriminates well between realizations from different distributions

Summary

Multiscale model diagnostic (MMD) discriminates well between realizations from different distributions

MMD is straightforward and computationally inexpensive

Summary

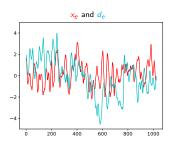
Multiscale model diagnostic (MMD) discriminates well between realizations from different distributions

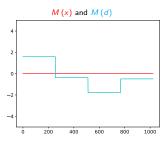
MMD is straightforward and computationally inexpensive

In simplistic situations, MMD gives guidance regarding what changes that are desireable for the prior predictive distribution

Method assessment on toy problems

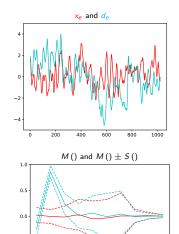
Example 5 - blockwise varying data mean





Method assessment on toy problems

Example 5 - blockwise varying data mean



4

-0.5

