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Model diagnostic of prior predictive distribution

... prior predictive distribution

Xe=g(me)+€; e=1,... E

g : forward model/simulator
me : prior parameter realization
€e : error realization

Xe : (perturbed) prior prediction
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Assess if prior predictions are consistent with observed data, that is, if
the observed data vector could be a credible realization from the prior
predictive distribution
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Model diagnostic of prior predictive distribution

...to reduce the risk of unsuccessful data assimilation

Assess if prior predictions are consistent with observed data, that is, if
the observed data vector could be a credible realization from the prior
predictive distribution

If not consistent, (part of) the modeling setup should be changed before
data assimilation is performed

Coverage of individual observations by the ensemble of prior predictions
is not sufficient for consistency, as coverage does not take into account
trends and shapes



Model diagnostic of prior predictive distribution
The task

prior predictions data
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Could the black curve be a credible realization from the prior predictive
distribution?
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Multiscale model diagnostic of prior predictive distribution

Compare prior predictions and data on multiple scales of variation

The method utilizes scalar products of prior predictions and data with certain
multiscale vectors

Xke = hlZ—Xe
ok = hld

Xe : (recall) prior prediction
d : data
hy : multiscale vector on scale k



Multiscale model diagnostic of prior predictive distribution

Multiscale vectors (the four vectors with the longest characteristic length)
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Multiscale model diagnostic of prior predictive distribution
Application to real data

With real data, there is only a single data vector available

ok =hld



Multiscale model diagnostic of prior predictive distribution

Application to real data and method assessment

With real data, there is only a single data vector available

ok =hld

When assessing the method's applicability and robustness on toy
problems, | will consider an ensemble of data realizations to avoid effects
associated with a particular data vector

Ske = hl de

Empirical means, M (dx), and standard deviations, S (dx), will then be
available for comparison with M (xx) and S (x«)



Multiscale model diagnostic of prior predictive distribution

Method assessment on toy problems
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Method assessment on toy problems

Plot explanation

Xe
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M (xx) and M (xx) £ S (xk)

ho
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Repeat for all e and compute

M (x0) and S (x0)



Method assessment on toy problems

Plot explanation

Xe
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Method assessment on toy problems

Plot explanation

Xe
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M (xx) and M (xx) £ S (xk)

multiply xe with

to obtain x2 e

Repeat for all e and compute

M (x2) and S (x2)



Method assessment on toy problems

Plot explanation, use of colors: prior predictive, data

Xe and de
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Method assessment on toy problems

Example 1 - x. and d. from the same distribution
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Method assessment on toy problems

Example 1 - x. and d. from the same distribution
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Method assessment on toy problems

Example 1 - x. and d. from the same distribution with ensemble size 1000

Xe and de
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Method assessment on toy problems
Example 2

Xe and de
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Method assessment on toy problems

Example 2 - different data means

Xe and de M (x) and M (d)
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Method assessment on toy problems

Example 2 - different data means

Xe and de
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Method assessment on toy problems

Example 2 - simplified explanation of behaviour

M (d)
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Example 2 - simplified explanation of behaviour
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Method assessment on toy problems

Example 2 - simplified explanation of behaviour

M (d)
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Method assessment on toy problems
Example 3

Xe and de
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Method assessment on toy problems

Example 3 - decreasing data mean

Xe and de M (x) and M (d)
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Method assessment on toy problems

Example 3 - simplified explanation of behaviour
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Method assessment on toy problems
Example 4 - correlation lengths 25 (x) and 50 (d)
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Method assessment on toy problems
Example 4 - correlation lengths 25 (x) and 50 (d)
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Method assessment on toy problems

Example 4 - simplified explanation of behaviour

detail of another potential ve
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Large standard deviation of h] ve when characteristic lengths of ve and hy are similar



Method assessment on toy problems
Example 4 - correlation lengths 25 (x) and 50 (d)
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Example 4 - simplified explanation of behaviour
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Method assessment on toy problems

Example 4 - simplified explanation of behaviour

detail of potential ve

1/ \
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1 one period of hy

Small standard deviation when characteristic length of v, is larger than that of hy



Multiscale model diagnostic of prior predictive distribution

Application to real data
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The Norne field
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Application to real data
The Norne field

Voring Basin

‘More Basin 3

Data from G segment
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Simulation model geometry

20 40 60 80 100

F4

Production data from well E4 (wells: black dots on right figure)

Time-lapse (4-D) impedance data from most of the segment

RFT data from wells E4 and F4

— E4



Application to real data

Production data - results for well E4
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Application to real data

Production data - results for well E4
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Application to real data

Production data - results for well E4
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Application to real data

Time-lapse impedance data

Time-lapse data are obtained by subtracting data acquired from two
surveys over the same study region at different times. The aim is to infer
fluid movements and/or pressure changes in the subsurface over this time
span, and also to infer flow-related rock properties, such as permeability
(fluid conductivity)



Application to real data

Time-lapse impedance data

Time-lapse data are obtained by subtracting data acquired from two
surveys over the same study region at different times. The aim is to infer
fluid movements and/or pressure changes in the subsurface over this time
span, and also to infer flow-related rock properties, such as permeability
(fluid conductivity)

Impedance (density x velocity) data for a subsurface region are obtained
by inverting seismic data observed in the sea water or at the sea floor.
Hence, they are not really data, but it is common to split the assimilation
of time-lapse seismic data into flow-related rock properties this way



Application to real data

Time-lapse impedance data - study region

The major part of the Norne G segment constitutes the study region
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Application to real data

Time-lapse impedance data - multiscale vectors

ho




Application to real data
Time-lapse impedance data - time span 2001-2003
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Application to real data

Time-lapse impedance data - time span 2001-2003 - results
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Application to real data

Time-lapse impedance data - time span 2001-2004 - results
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Application to real data

Time-lapse impedance data - time span 2001-2006 - results
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Application to real data
RFT data

RFT (Repeat Formation Tester) data consist of pressure values along the
wellbore
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2550

L1
2560

B ———
2570

z (m)

2580
oum cummm o 0

2590
220 240 260 280 300

Pressure (bar)



E

z(

Application to real data
RFT data
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Application to real data
RFT data - results for well E4
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Application to real data
RFT data - results for well E4
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Application to real data
RFT data - results for well E4
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Application to real data
RFT data - results for well F4
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Application to real data
RFT data - results for well F4

xe and d subset of x. and d
2610 2610
¢ wemememn o o " wmemew o o
. "D oEn me o . L] GED U me o .
2640 ¢ emmomess o o 2640 ¢ emmomens o o
%R % R
o ecmmomens o o e emmomems o o
2670 2670
P
e
2700 comemm—r = 2700
L %]
2730 2730
——san
2760 2760
160 180 200 230 240 260 280 it 150 200 230 240 260

=20




Application to real data
RFT data - results for well F4
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Summary

Multiscale model diagnostic (MMD) discriminates well between
realizations from different distributions
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Summary

Multiscale model diagnostic (MMD) discriminates well between
realizations from different distributions

MMD is straightforward and computationally inexpensive

In simplistic situations, MMD gives guidance regarding what changes
that are desireable for the prior predictive distribution
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Method assessment on toy problems

Example 5 - blockwise varying data mean

Xe and de M (x) and M (d)
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