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Parameter estimation

Noisy observations, do related to model parameters, m:

do = g(m) + ε

and prior

m ∼ N[mpr ,Cm]

• m might be log-permeability and porosity on a reservoir

simulation grid.

• g(m) might be water production rate at well locations.

• Objective is to make inference about m (so that we can

forecast).
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The posterior landscape1

• Posterior pdf is bi-modal

• Seems to be common with

facies models.

1? “The impact of upscaling errors on conditioning a stochastic channel to

pressure data”
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The posterior landscape2

2? “An analysis of history matching errors ”
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Sometimes, posterior is “rough” but roughness at finer scale

Parameter estimation in Lorentz (1963) model.3

Iterative ensemble smoothers work well on this type of problem.

Exact derivatives would be useless.

3? “Efficient parameter estimation for a highly chaotic system”
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For problems with several similar minima, standard ensemble

methods will fail4

MCMC ensemble smoother RML-like

4? “Ensemble Inference Methods for Models With Noisy and Expensive

Likelihoods”
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Data assimilation – Randomized maximum likelihood

1. Sample a gaussian random variables x∗

2. Sample the observation error ε

3. Compute argminx ‖do − g(m(x))− ε∗‖2
C−1
d

+ ‖x − x∗‖2
C−1
x

Gauss-Newton minimization5

δx` = x∗ − x` − CxG
T
`

[
CD + G`CxG

T
`

]−1

×
[

(g(m(x`))− do
j )− G`(x` − x∗)

]
.

where GT = ∇xg
T.

5We almost always use Levenberg-Marquardt but omitted for clarity.
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Example: RML sampling with many modes6
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Two model variables and two nonlinear observations.

g [x1, x2] =

[
sin[2πx1]

sin[2πx2]

]

σD = 0.2, xpr = (0.0, 0.0) and σX = 1., dobs = (0., 0.)
6? “Metropolized randomized maximum likelihood for improved sampling from

multimodal distributions”
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Data assimilation – Iterative ensemble smoother (IES)

To avoid computation of G ,7 we may use an IES approach:

δx`+1 = −∆x`(∆x`)TC−1
x (x` − x∗)

−∆x`(∆d`)T
(
Cd + ∆d`(∆d`)T

)−1

×
(
g(m`)− δ∗ −∆d`(∆x`)TC−1

x (x` − x∗)
)
,

where ∆x` = (X`−X̄`)√
(N−1)

and similar for ∆d`.

7Computation of G requires the solution of the adjoint system for the reservoir

flow and transport equations.
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Data assimilation – IES

IES Hybrid IES Hybrid IES Hybrid
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History matching of truncated plurigaussian models.8 Iterative ensemble

smoother works well for monotonic threshold maps, but poorly for symmetric

(channel-like).
8?
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RML:

CxGT
`

[
Cd + G`CxGT

`

]−1

IES:

∆x`(∆d`)T
(
Cd + ∆d`(∆d`)T

)−1

same effective G for all ensemble members
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Hybrid iterative ensemble smoother

Consider composite models d = g(m(x))

For the hybrid IES, the sensitivities of m with respective to x and

of data g with respective to m are required.

G = ∇x(gT ) = Gm.(∇x(mT ))T = GmMx

Then RML update can be written as

δx`+1 = −(x` − x∗)− CxMT
x GT

m

(
Cd + GmMxCxMT

x GT
m

)−1

×

(
g(m`)− δ∗ − GmMx(x` − x∗)

)
,

where Gm = (∆d`)(∆m`)
−1.
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Two types of problems:

1. Hierarchical parameterization (hyper parameters of the model
such as orientation of anisotropy are uncertain):

• Mx is potentially full but Cx is diagonal

example m = mpr + C 1/2
m x in which case Mx = C 1/2

m

(potentially dense) and Cx = I .

2. Permeability is a nonlinear function of Gaussian random
variable (e.g. truncated plurigaussian)

• Cx is potentially full but Mx is diagonal

example x ∼ N[0,Cx ] but Mx = diag ∂mi/∂xi , i = i , . . .Nx .

Compute terms like CxMT
x GT

m
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Application to large models

Compute terms like CxMT
x GT

m (multiply either Cxv or MT
x v)

Assume Cx and MT
x are (block) Toeplitz, in which case there are

very fast methods for multiplication.9 Recall

A =



a0 a−1 · · · · · · a−(n−1)

a1 a0
. . .

...
...

. . .
. . . a−1 a−2

...
. . . a1 a0 a−1

an−1 · · · a2 a1 a0


is a Toeplitz matrix.

9? “Fast and exact simulation of stationary Gaussian processes through

circulant embedding of the covariance matrix”
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Examples



log-permeability transformation10
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“true log k observed water cut

m = 2 tanh(4x + 2) + tanh(2− 4x)− 1

has “connectivity” of high permeability regions.

dm/dx = 4− 8 tanh2(4x + 2) + 4 tanh2(2− 4x)
10Ongoing work with Yuming Ba, building on ?
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Iterative ensemble smoother with Levenberg-Marquardt mini-

mization
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Problem has multiple main minima. Iterative ensemble smoother

(with localization) is essentially useless.
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Six realizations from prior and posterior

prior realizations posterior realizations

Reminder: This is using somewhat state-of-the-art IES.
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Hybrid Iterative ensemble smoother with Levenberg-Marquardt

minimization
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Greedy minimization. Many local minima.
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Hybrid IES: Six realizations from prior and posterior

prior realizations posterior realizations

Each ensemble member has a distinct Kalman gain matrix.

Less likely to collapse.

Can use independent LM.

19/100



Six realizations from posterior with largest weights

posterior realizations

“true model”
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Hierarchical model with unknown orientation of anisotropy11

Spatially distributed observations of

the permeability field.

The sensitivity of model parameters (the GRF) to the latent

independent standard normal variates are computed analytically.

Gi = Gm

[
Li ( ∂

∂φLi )zi

]
where Li = C

1/2
m,i (different covariance matrix for each ensemble

member).

11? “Hybrid iterative ensemble smoother for history matching of hierarchical

models ”
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Reduction in data mismatch
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Realizations

prior realizations posterior realizations
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Reduction in uncertainty of orientation
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Comparison of prior and posterior pdf for orientation
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Summary

• Allows approximate sampling for some problems where IES

fails (similar to RML)

• Approximate sampling in problems with multiple modes.

• Allows individual minimization control

• Analysis step is slower than standard IES

• requires some large matrix multiplications (use circulant

embedding when appropriate)

• requires the prior covariance or correlation function (not just a

prior ensemble)
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