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ABSTRACT: This paper identifies and explains particular differences and properties of adjoint-free iterative ensemble methods initially
developed for parameter estimation in petroleum models. Furthermore, we demonstrate the methods’ potential for sequential data
assimilation in coupled and multiscale unstable dynamical systems. To examine the data assimilation methods, we introduce a new
nonlinear and coupled multiscale model based on two Kuramoto-Sivashinsky equations operating on different scales where a coupling
term relaxes the two model variables towards each other. This model provides a convenient testbed for studying data assimilation in highly
nonlinear and coupled multiscale systems. Results and discussions will provide an enhanced understanding of the ensemble methods’
potential implementation and use in operational weather and climate-prediction systems. We show that the model coupling leads to
cross-covariance between the two models’ variables, allowing for a combined update of both models. The measurements of one model’s
variable will also influence the other and contribute to a more consistent estimate. Secondly, the new model allows us to examine the
properties of iterative ensemble smoothers and assimilation updates over finite-length assimilation windows. We discuss the impact of
varying the assimilation-window lengths relative to the model’s predictability time scale. Furthermore, we show that iterative ensemble
smoothers significantly improve the solution’s accuracy compared to the standard ensemble-Kalman-filter update.

1. Introduction

Numerical weather prediction at national and inter-
national weather centers uses various data-assimilation
approaches to initialize ocean and atmosphere models.
de Rosnay et al. (2022) and Laloyaux et al. (2016) describe
the current state-of-the-art coupled data-assimilation sys-
tem at ECMWF, which combines the assimilation of ocean
observations using a 3DVar scheme with the assimilation
of atmospheric observations using a 4DVar method. The
ECMWF data-assimilation system assumes a weak cou-
pling between the two subsystems in which increments
produced by independent data assimilation updates of each
component are subsequently applied simultaneously to the
initial model state of each component. After that, they
perform a coupled model integration to provide the first
guess for the next iteration in the cost-function minimiza-
tion. GFDL uses a two-step ensemble-based filtering al-
gorithm applied to a fully coupled climate model Chang
et al. (2013). NCEP assimilates data into partially coupled
earth-system components using a 3DVar-based scheme to
assimilate land-surface, atmosphere, ocean, and sea-ice
observations (Saha et al. 2010).

Penny et al. (2017) provide a comprehensive overview
of coupled ocean-atmosphere models. While most op-
erational approaches have a weak coupling between the
two subsystems and so-called outer-loop coupling, more
conceptual studies investigate the effect of a strong cou-
pling. For example, Luo and Hoteit (2014) use a multi-
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scale Lorenz-96 model to evaluate the performance of a
state-space estimation strategy that assimilates data into
each subsystem and correlated quantities from other cou-
pled subsystems. In a slightly more realistic setting, Han
et al. (2013) couple a Lorenz-63 model to a pycnocline
ocean model.

Penny et al. (2019) compares several data-assimilation
algorithms on a single quasi-geostrophic model. Tondeur
et al. (2020) used the same model to study coupled data
assimilation with the ensemble Kalman filter (EnKF) for
a system consisting of a slow ocean coupled to a fast at-
mosphere. This study illustrates the mechanisms behind
information propagation between the system’s two com-
ponents and concludes that cross-component effects are
strong from the slow to the fast scale.

This study will use a simplified representation of two
coupled earth-system components to explore the informa-
tion propagation between a component with predominantly
large spatial scales (the atmosphere) and a component with
more minor spatial scales. In addition, we evaluate the effi-
ciency of different data-assimilation algorithms in coupled
data assimilation.

The coupled model uses the Kuramoto-Sivashinsky
(KS) equations to describe interactions between two sys-
tems: one with a longer spatial scale (typically the atmo-
sphere) and one with a shorter spatial scale (typically the
ocean). We describe the model in the following section.
After that, we introduce and discuss the adjoint-free data-
assimilation methods before we run multiple experiments
to examine the impact and value of coupled data assimila-
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tion and various sensitivities to window lengths, number
of iterations, etc.

2. Coupled multiscale Kuramoto-Sivashinsky model

We will now describe the nonlinear multiscale model
used to study our data-assimilation methods. We needed
a model with specific properties, including unstable and
near-chaotic dynamics with nonlinear saturation of the lin-
ear instabilities, similar to oceanic and atmospheric behav-
ior. For computational reasons and ease of interpretation,
we searched for a one-dimensional and univariate equation
for each component of the coupled system. Finally, we
need a model that can inhibit different spatial and temporal
scales, as we wish to study the assimilation of observations
in coupled models with different scales. The model system
should resemble the behavior of coupled climate models,
where the ocean and atmospheric components have vastly
different spatial and temporal scales. Our choice landed
on a variant of the Kuramoto-Sivashinsky (KS) equation,
from which we derived two model configurations operat-
ing on different spatial scales and with an interaction or
relaxation term connecting the two models. In the current
study, we only include different spatial scales between the
model components, but it is possible to alter the temporal
scale of the models in further studies.

The Kuramoto-Sivashinsky (KS) equation is a fourth-
order partial differential equation initially used to de-
scribe diffusive thermal instabilities in laminar flame fronts
(Kuramoto 1978; Sivashinsky 1977, 1980). The model
can also describe the dynamics of fluid films on inclines
(Shlang and Sivashinsky 1982; Tilley et al. 1994), flow
in pipes (Chang 1986), and dynamics of chemical reac-
tions. Kuramoto (1978) described how the coupling of
an oscillation and a spatial inhomogeneity could produce
spatio-temporal chaos and how one can obtain a balance
between phase instability and amplitude instability. The
KS equation is

𝜕𝑢

𝜕𝑡
+𝑢 𝜕𝑢

𝜕𝑥
= −𝜕

2𝑢

𝜕𝑥2 − 𝜕
4𝑢

𝜕𝑥4 . (1)

The equation reduces to the Burgers equation if we ignore
the diffusion terms on the right-hand side, where the non-
linear term, 𝑢𝑢𝑥 , transfers energy between large and small
scales and creates shocks. The harmonic diffusion term
has a negative sign and acts to enhance any feature in the
model solution. In contrast, the biharmonic diffusion term
with a negative sign acts as a small-scale selective positive
diffusion, thereby controlling any growing instabilities in
the model.

Protas et al. (2004) introduced the KS equations for an
evaluation of 4DVar data-assimilation methods. Jardak
et al. (2010) and Chorin and Krause (2004) evaluated the
performance of Bayesian filters using the KS-equations,
while Azouani and Titi (2014); Lunasin and Titi (2017)

used the equations as a testbed for the so-called continuous
data-assimilation technique, and ? used it for correlated
observation error estimation.

We refer to https://online.kitp.ucsb.
edu/online/transturb17/gibson/html/
5-kuramoto-sivashinksy.html for a discussion
of the numerical implementation and example codes. In
short, we have used a Crank-Nicolson–Adams-Bashforth
(CNAB) scheme for time stepping the model. The
time-stepping method is second-order and implicit in time.
We discretized space using a Fourier decomposition as
this approach renders the inverse matrices in the scheme
diagonal, allowing for a highly efficient implementation.
Our Fortran-90 subroutine for the model integration is
available from https://github.com/geirev/EnKF_
MS/blob/main/src/m_model.F90. We have verified
that our code exactly reproduces the solution from https:
//online.kitp.ucsb.edu/online/transturb17/
gibson/html/5-kuramoto-sivashinksy.html.

In our implementation, we have used two KS models,
and we refer to the two model solutions as Atmos and Ocean
with the symbols 𝐴 and 𝑂 referring to their respective
variables. The coupled model equations read

𝜕𝐴

𝜕𝑡
= −1

2
𝜕𝐴2

𝜕𝑥
− 𝜕

2𝐴

𝜕𝑥2 − 1
2
𝜕4𝐴

𝜕𝑥4 +𝛼oa
(
𝑂 − 𝐴), (2)

𝜕𝑂

𝜕𝑡
= −1

2
𝜕𝑂2

𝜕𝑥
− 𝜕

2𝑂

𝜕𝑥2 − 𝜕
4𝑂

𝜕𝑥4 +𝜔ao
(
𝐴−𝑂). (3)

We couple the two equations through the relaxation terms
𝛼oa

(
𝑂 − 𝐴) and 𝜔ao

(
𝐴−𝑂) where we used coupling co-

efficients of 0.003 in both equations. Additionally, we
halved the biharmonic damping of the Atmos variable to
have more structures in the solutions.

To introduce different spatial scales in the two models,
we defined two different pseudo lengths of the model do-
mains for Ocean and Atmos. We used a periodic model
domain with 1024 grid points but assumed a physical size
of 32 for the Atmos domain and 256 for the Ocean domain.
A similar approach would introduce different time scales
in the two model components.

Our multiscale KS model is suitable for conceptualizing
data assimilation in coupled systems. We can consider
it a 1D analog to the 2D Navier-Stokes equations. The
model is well-posed; it has chaotic behavior and a finite-
dimensional global attractor. The 1D KS model simplifies
the analysis and interpretation of results, and we avoid
using computationally expensive 2D or 3D models.

In nonlinear chaotic models, such as weather prediction
models, we can define the model’s predictability time as
how long we can integrate the model before the model so-
lution’s uncertainty reaches the climatological error level.
Typically, nonlinear unstable models initially experience
exponential error growth before the errors saturate at the
climatological variability due to nonlinear effects.

https://online.kitp.ucsb.edu/online/transturb17/gibson/html/5-kuramoto-sivashinksy.html
https://online.kitp.ucsb.edu/online/transturb17/gibson/html/5-kuramoto-sivashinksy.html
https://online.kitp.ucsb.edu/online/transturb17/gibson/html/5-kuramoto-sivashinksy.html
https://github.com/geirev/EnKF_MS/blob/main/src/m_model.F90
https://github.com/geirev/EnKF_MS/blob/main/src/m_model.F90
https://online.kitp.ucsb.edu/online/transturb17/gibson/html/5-kuramoto-sivashinksy.html
https://online.kitp.ucsb.edu/online/transturb17/gibson/html/5-kuramoto-sivashinksy.html
https://online.kitp.ucsb.edu/online/transturb17/gibson/html/5-kuramoto-sivashinksy.html
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Fig. 1. The figure illustrates how we split time into discrete time windows. Within each time window, 𝑙, we integrate a model 𝐾 time steps and
assimilate the data d𝑙 .

3. Data-assimilation methods

We have adopted data-assimilation methods, notation,
and formulations from our recent open-access textbook
Evensen et al. (2022), where We split the time dimension
into a sequence of time windows as illustrated in Fig. 1.
The definition of finite-length assimilation windows fa-
cilitates easy assimilation of all data available within the
time window in one single update. It makes it possible
to use iterative ensemble smoothers to reduce the im-
pact of model nonlinearity and to obtain superior results
compared to standard EnKF solutions. The three meth-
ods considered in this paper are versions of the ensemble
smoother (ES) that trace back to the ES of Van Leeuwen
and Evensen (1996), the ensemble smoother with multi-
ple data assimilation (ESMDA) proposed by Emerick and
Reynolds (2012), and the ensemble randomized maximum
likelihood method (EnRML) by Chen and Oliver (2012,
2013). We are using the ensemble subspace implementa-
tion of Evensen et al. (2019) for the EnRML, which we in
the following refer to as the iterative ensemble smoother
(IES). The term “randomized maximum likelihood” does
not make sense as we are solving for randomized maximum
a posteriori solutions. Evensen et al. (2022) discussed and
explained the details of the algorithms. We also note that
the first step in the IES algorithm becomes identical to the
ES update if we choose a steplength of one. Thus, we can
use the numerical IES implementation to compute the ES,
ESMDA, and IES updates.

a. A theoretical basis for ensemble methods

The ensemble data-assimilation methods attempt to
sample the posterior conditional pdf defined by Bayes’
theorem

Bayes’ theorem

𝑓 (z|d) =
𝑓
(
d|g(z)

)
𝑓 (z)

𝑓 (d) . (4)

where we have introduced the composite model and mea-
surement operator g in

y = g(z), (5)

which maps the state vector z to the predicted measure-
ments y.

Kitanidis (1995); Oliver et al. (1996) showed that for a
Gaussian prior and likelihood, minimization of an ensem-
ble of cost functions

Ensemble of cost functions

J (z 𝑗 ) =
1
2
(
z 𝑗 − zf

𝑗

)TC−1
zz

(
z 𝑗 − zf

𝑗

)
+ 1

2
(
g(z 𝑗 ) −d 𝑗

)TC−1
dd

(
g(z 𝑗 ) −d 𝑗

)
,

(6)

results in an approximate sampling of the posterior
Bayesian pdf. This randomized maximum likelihood
(RML) sampling is exact in the case of a Gauss-linear
model and measurement operator, and the significance of
the approximation will depend on the level of nonlinearity
of the model in Eq. (5). The cost functions are mutually
independent for each realization 𝑗 and use the random sam-
ples zf

𝑗
∼N(zf ,Czz) for the prior zf and d 𝑗 ∼N(d,Cdd) for

the perturbed measurements to represent the uncertainties.
The covariances Czz and Cdd are the error covariances for
the prior state vector and the measurements.

Note that to solve the assimilation problems for a par-
ticular assimilation window, we must assume that mea-
surements are independent between the different windows
and that the model is a first-order Markov process. Addi-
tionally, we apply a filtering assumption by only updating
the solution in the current assimilation window and ig-
noring any updates of the past windows. We can easily
relax the the filtering assumption by using an ensemble
Kalman smoother (EnKS) approach to update the solution
in previous windows (Evensen and Van Leeuwen 2000).

We derive the ensemble methods by setting the gradient
of the cost function in Eq. (6) to zero,

Ensemble of gradients set to zero

C−1
zz

(
z 𝑗 − zf

𝑗

)
+∇zg

(
z 𝑗
)
C−1

dd
(
g(z 𝑗 ) −d 𝑗

)
= 0. (7)

By introducing a linearization of g(z) around the prior
estimate z 𝑓

𝑗
we obtain an ensemble of Kalman filter update
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equations.

za
𝑗 = zf

𝑗 +CzzGT
𝑗

(
G 𝑗CzzGT

𝑗 +Cdd
)−1 (

d 𝑗 −g
(
zf
𝑗

) )
. (8)

However, as we noted in the previous chapter, these equa-
tions are only valid in the linear case or for modest updates
in the nonlinear case. Alternatively, we can use the gradi-
ent and the Hessian

∇z∇zJ (z 𝑗 ) ≈ C−1
zz +∇zg(z 𝑗 )C−1

dd
(
∇zg(z 𝑗 )

)T
. (9)

in a Gauss-Newton iteration to minimize the ensemble of
cost functions exactly. This latter approach corresponds
to the ensemble 4DVar method where we use variational
methods to minimize the ensemble of independent cost
functions.

However, in this paper we will introduce another ap-
proximation that allows us to eliminate the models tangent
linear operator. We will represent the model sensitivity
by an ensemble-averaged sensitivity through the linear re-
gression

∇zg
(
z 𝑗
)
= C−1

zz Czy. (10)

In Eq. (10), we replace all individual model sensitivities
for the different realizations with a common average one.
This approximation implies that we are no longer solving
strictly for the minima of the cost functions in Eq. (6), but
we approximate the estimates of the minima.

The final approximation is to represent all covariances
using an ensemble of realizations, leading to the ensemble
Kalman filter or smoother update formulated entirely in
terms of ensemble matrices (Evensen 2003) as

Za = Zf +AYT
(
YYT +EET

)−1 (
D−g

(
Zf ) )

= Zf +AW.
(11)

Here we have defined the ensemble matrices

Z =
(
z1, z2, . . . , z𝑁

)
. (12)

Furthermore, we define the projection 𝚷 ∈ ℜ𝑁×𝑁 as

𝚷 =

(
I− 1

𝑁
11T

) /√
𝑁 −1, (13)

where 1 ∈ℜ𝑁 is a vector with all elements equal to one and
I𝑁 is the 𝑁-dimensional identity matrix. If we multiply
an ensemble matrix with the orthogonal projection 𝚷, this
subtracts the mean from the ensemble and scales the result
with 1/

√
𝑁 −1.

We can then define the zero-mean and scaled ensemble-
anomaly matrix as

A = Z𝚷, (14)

and the ensemble covariance is

C𝑧𝑧 = AAT, (15)

where the “overbar” denotes that we have an ensemble-
covariance matrix.

Correspondingly, we can define an ensemble of per-
turbed measurements, D ∈ ℜ𝑚×𝑁 , when given the real
measurement vector, d ∈ ℜ𝑚, as

D = d1T +
√
𝑁 −1E, (16)

where E ∈ ℜ𝑚×𝑁 is the centered measurement-
perturbation matrix whose columns are sampled from
N(0,Cdd) and divided by

√
𝑁 −1. We define the ensemble

covariance matrix for the measurement perturbations as

C𝑑𝑑 = EET. (17)

The ensemble algorithms work both with a full-rank Cdd
or the ensemble version of the measurement covariance
represented by the perturbations in E.

Finally, we define the ensemble of model-predicted mea-
surements

𝚼 = g(Z), (18)

with anomalies
Y = 𝚼𝚷, (19)

where we have multiplied the model prediction by the pro-
jection 𝚷 to subtract the ensemble mean and divide the
resulting anomalies by

√
𝑁 −1. From the second line in

Eq. (11), we notice that the update becomes a linear com-
bination of the prior ensemble anomalies.

Similarly to the EnKF update, we can write the IES equa-
tions using the ensemble matrices. Still, a better alternative
is to use the EnRML’s ensemble subspace variant devel-
oped by Evensen et al. (2019); Raanes et al. (2019). We
refer to these papers and the open-access book by Evensen
et al. (2022) for an in-depth discussion of this method.

b. Ensemble smoother

When formulated for a single data-assimilation window,
the update computed by the ensemble smoother is a simple
extension of the Ensemble Kalman Filter (EnKF) update by
Evensen (1994); Burgers et al. (1998). In the standard form
of EnKF, one updates the model solution instantly when
measurements are available. The ES provides a framework
where we can update the solution at any time step or all
time steps in an assimilation window, using simultaneously
all measurements available within the window. When mea-
surements are available at the end of the window, the ES
solution at the end of this window is identical to the EnKF
solution. Furthermore, ES provides a means for using the
EnKF formalism with measurements distributed over the
assimilation window and updates computed at the end of
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the window. Thus, we can view ES as an extension of
the EnKF that adds an update in the space-time domain
with measurements distributed in space and time over this
domain.

c. Iterative ensemble smoother

While ES computes one linear step in the gradient di-
rection to approximate the cost functions’ minima, the IES
uses Gauss-Newton iterations to search for the ensemble
of cost functions’ minima, defining the posterior ensemble.
If the cost functions do not contain local minima, the it-
erative smoothers should converge to the global minimum
of each cost-function realization. But note that we are us-
ing the ensemble-averaged model sensitivity from Eq. (10)
that slightly changes the gradient Eq. (7) for each realiza-
tion. Additionally, we use ensemble covariances, which
constrain the posterior ensemble to the ensemble subspace
spanned out by the prior ensemble of realizations.

In its standard formulation, IES attempts to estimate the
initial conditions of the assimilation window. After updat-
ing the initial conditions, we must reintegrate the ensemble
of model realizations over the window to compute the up-
dated gradient in each iteration. Realizing, however, that
the final converged transition matrix defines the posterior
ensemble solution as a linear combination of the prior en-
semble and that we do not need the gradient after the final
update, we could use this final transition matrix to update
the ensemble directly over the whole assimilation window.
These two strategies would give identical results in the
linear case without model errors.

For the iterative ensemble-smoother solutions, we will
use the ensemble subspace implementation by Evensen
et al. (2019) of the EnRML method by Chen and Oliver
(2012).

A final note is that if we were to use the IES with-
out introducing the ensemble-averaged model sensitivity
and ensemble covariances, we would essentially have an
ensemble-4DVar (En4DVar) method, which solves an en-
semble of independent 4DVar problems using the adjoints
to evaluate the model sensitivity. By introducing ensem-
ble covariances in the En4DVar, we would obtain an iter-
ative smoother with consistent error statistics that evolve
and become updated at each analysis time. The resulting
smoother would be more accurate than the IES as it does
not replace the tangent-linear and adjoint operators by the
approximate model sensitivity.

d. Ensemble smoother with multiple data assimilation

The ensemble smoother with multiple data assimilation
(ESMDA) is an interesting alternative to IES, and it also
attempts to approximately sample the posterior from Bayes.
When requiring that finite number 𝜇 of coefficients 𝛼𝑖

satisfy the condition

𝜇∑︁
𝑖=1

1
𝛼𝑖

= 1, (20)

we can write Bayes’ as

𝑓
(
z|d

)
∝ 𝑓

(
d|g(z)

)
𝑓
(
z
)

= 𝑓
(
d|g(z)

) (∑𝜇

𝑖=1
1
𝛼𝑖

)
𝑓
(
z
) (21)

The tapering of the likelihood allows for a gradual intro-
duction of the measurements over a predefined number of
MDA steps. For example, we could use two steps and
set 𝛼1 = 𝛼2 = 2, which satisfies the condition in Eq. (20).
In this case we would have to solve recursively the two
updates

𝑓
(
z|d

)
∝ 𝑓

(
d|g(z)

) 1
2 𝑓

(
z
)
, (22)

𝑓
(
z|d

)
∝ 𝑓

(
d|g(z)

) 1
2 𝑓

(
z|d

)
. (23)

The impact of raising a Gaussian likelihood to a power 1/𝛼
is an inflation of the measurement error variance where the
error covariance matrix becomes multiplied by 𝛼. Conse-
quently, we can solve each MDA update using ES and the
Eq. (11) but using the inflated measurement error covari-
ance 𝛼Cdd ≈

√
𝛼E

√
𝛼ET. A word of caution is that it is

necessary to resample measurement perturbations
√
𝛼E in

each step to avoid introducing a bias from using dependent
samples. During the stepwise updating using ESMDA, we
must update the initial state of the assimilation window
and then reintegrate the model ensemble over the window
to obtain the “prior” ensemble of realizations for the next
ESMDA step.

The advantage of ESMDA over ES is that while ES
computes one large linear update, ESMDA computes a
sequence of small linear updates, reducing the impact of
the linearization in the ES scheme. We can view ES-
MDA as an Euler pseudo-time-stepping in state space with
a short stepsize while ES computes the update over one
large timestep equal to one. ESMDA has become one of
the most popular data assimilation methods in petroleum
applications, and several companies use it extensively and
operationally for parameter estimation in large petroleum
reservoir models. Due to the duality of the parameter- and
state-estimation problems when updating the initial condi-
tions of an assimilation window, ESMDA is equally appli-
cable for sequential data assimilation. For linear dynamics
and measurements, ESMDA and ES will result in the same
solution with increasing ensemble size, independent of the
number of ESMDA steps.

When used in sequential data assimilation, ESMDA up-
dates the initial conditions of the assimilation window
through a finite number of ES steps. In each ESMDA
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step, we must rerun the model ensemble over the assimi-
lation window to obtain the prior for the next update step.
However, as for IES, we can choose two strategies for the
final step in ESMDA. We can update the initial conditions
of the assimilation window and rerun the model ensemble
to obtain the solution over the window or update the en-
semble directly over the whole assimilation window using
the ES algorithm without rerunning the ensemble. Both
these approaches are valid and consistent as the ESMDA
steps are independent ES steps, and as for ES, we can freely
choose the update strategy. A critical remark is that the
prior ensemble for the last ESMDA step is the “nearly con-
verged” ensemble from the previous update step. In the
experiments below, we will show that, as for ES, it is an
advantage to compute directly the final ES update over the
whole assimilation window, particularly when the assimi-
lation window becomes long compared to the predictability
time of the model.

There is, however, a significant difference from IES if we
decide to update the solution over the whole window in the
final iteration. While in ESMDA, the prior for the last step
is the posterior from the previous step, in IES, the posterior
solution is a linear combination of the prior ensemble.
Thus, the starting point for computing a global update
over the window is different and typically less accurate in
the IES than in the ESMDA. We will evaluate these two
approaches in the experiments below.

There are other fundamental differences between IES
and ESMDA. While IES is an iterative method, ESMDA
computes a predefined number of update steps. IES mini-
mizes the ensemble of initially defined RML cost functions.
At the same time, ESMDA solves in each step for the min-
ima of a new resampled ensemble of cost functions using
a linear ES update. However, although the final ensemble
solutions will be different using IES and ESMDA, both
methods consistently attempt to sample the posterior pdf,
and in the linear case with increasing ensemble size, they
converge to the same pdf.

4. Importance of coupled data assimilation

We will now demonstrate the importance of computing
fully coupled data-assimilation updates. By fully cou-
pled, we understand that measurements of one model com-
ponent will update all model components through their
cross-covariances estimated from the ensemble of coupled
model realizations. We start in the following section by ex-
amining the impact of the coupling term on the KS model
and the cross-covariance functions. After that, in Sec. b,
we will compare coupled and uncoupled data-assimilation
experiments.

a. Ensemble predictions and covariances

We now present two ensemble prediction experiments
to illustrate some properties of the coupled Kuramoto-

Sivashinksy models with our choice of model parameters.
Fig. 2 shows the results from experiment PRED0, where we
run an ensemble of 1000 realizations of the two models in
Eqs. (2) and (3) in an uncoupled mode with 𝛼oa =𝜔ao = 0.
Hence, the two models evolve independently of each other.

In Fig. 3, we present the coupled reference simulations
where 𝛼oa =𝜔ao = 0.003. In both the PRED0 and PRED1
experiments, we notice the apparent chaotic behavior of the
two model variables and the differences in spatial scales be-
tween the Ocean and Atmos variables, as shown in the left
panels of the Figs. 2 and 3. While the two models evolve
independently in PRED0, we observe a significant impact
of the coupling in PRED1, where the fine-scale Ocean fea-
tures follow the large-scale structures in the Atmos solu-
tion, which also changes compared to the uncoupled sim-
ulation. The ensemble mean converges quickly towards
zero for both compartments in both experiments, as shown
in the center panels. Very importantly, the standard devia-
tions shown in the right panels remain at the climatological
level of around 1.25 and 1.75 for the two model compo-
nents but appear to saturate at a slightly lower level in the
coupled simulations than in the uncoupled one, suggesting
that the coupling slightly stabilizes the model. The slightly
higher standard deviation in the Atmos variable is likely a
result of the lower biharmonic diffusion in this model and
the difference in scales where the biharmonic diffusion has
less effect on the Atmos variable’s larger scales.

Fig. 4 shows the time evolution of the root-mean-square
residuals between the ensemble mean and the reference
solution as the solid lines. The soft lines are the root-
mean-square of the ensemble standard deviations averaged
over the spatial coordinate. The error growth saturates after
an integration time of about 10-20 units of time, indicating
the model’s predictability time.

For coupled data assimilation, we are interested in
the ensemble correlations between an observation of one
model component’s variable with itself and the variable
of the other model. In Figs. 5 and 6, we show the space-
time correlation functions between an observation of either
the Ocean or the Atmos variables located in the center of
the domain and the respective model components. The
correlation function of an observation with the measured
variable reflects the spatial scales of the variable. How-
ever, we note that there is also a correlation in time, which
is essential when computing smoother solutions over an
assimilation window. We also notice that the correlations
from the uncoupled and coupled models differ slightly due
to the change in dynamics introduced by the coupling term.

In the uncoupled case, the correlations between differ-
ent variables are zero (within the sampling errors). Hence,
for an uncoupled model system, an Ocean observation will
only influence the Ocean variable, and similarly for an At-
mos observation. However, for the coupled model, we
obtain well-structured and significant cross-correlations
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Fig. 2. Exp. PRED0: Uncoupled ensemble-prediction experiment without DA.
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Fig. 3. Exp. PRED1: Coupled ensemble-prediction experiment without DA.
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Fig. 4. The plots show the time evolution of the residuals for the ensemble predictions from the PRED0 and PRED1 experiments. The full lines
indicate root-mean-square errors (RMSE) relative to the reference solution, while the soft lines are the ensemble-predicted RMSE.
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Fig. 5. Exp. PRED0: Correlations from uncoupled experiment.

between the variables, as seen in Fig. 6. These cross-
correlations will cause the measurement of one model
component to lead to an update of the other model compo-
nent when computing an assimilation update. The cross-
correlations indicate that an Ocean observation will in-
fluence the Atmos variable in the past while an Atmos
observation predominantly influences the Ocean variable
in the future. Also, with these cross-correlations, an Ocean
observation will update the Atmos variable on the Atmos
variable’s spatial and time scale. In contrast, an Atmos ob-
servation will update the Ocean variable on multiple scales.
I.e., the update introduces a prominent Atmos-scale feature
and a finer Ocean-scale variability to the Ocean variable.
From studying the space-time correlations, we observe that
the Atmos model partly drives the Ocean model.
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Fig. 6. Exp. PRED1: Correlations from coupled experiment.

b. Coupled data-assimilation experiments

In the following experiments, we have used ESMDA
with five steps and assimilation windows with a length of
five units of time. On the other hand, we have varied the
measurement densities to emphasize the results; see Tab. 1.
Note that the first measurements become available at time
𝑡 = 50.

We start by testing the impact of coupled assimilation
of only Ocean data in Exp. KS-MDA-5-O and only At-
mos data in Exp. KS-MDA-5-A, and we present the results
in Figs. 7 and 9. Here, we jointly update the Ocean and
Atmos variables when we assimilate the Ocean or the At-
mos data. Complementary to these experiments, we have
run Exps. KS-MDA-5-Osep and KS-MDA-5-Asep, using
“uncoupled” data assimilation. We only update the Ocean
variable using the Ocean data and only the Atmos variable
when conditioning on the Atmos data; see Figs. 8 and 10.
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Experiment window length num ocean obs num atmos obs Δ𝑡 ocean obs Δ𝑡 atmos obs
KS-MDA-5-O 5 40 0 2 —
KS-MDA-5-Osep 5 40 0 2 —
KS-MDA-5-A 5 0 15 — 4
KS-MDA-5-Asep 5 0 15 — 4
KS-MDA-5 5 40 10 5 5
KS-MDA-5sep 5 40 10 5 5

Table 1. The table summarizes the coupled versus uncoupled data-assimilation experiments.

Assimilation of only Ocean data in experiment KS-
MDA-5-O controls the Ocean variable well, as seen in
Fig. 7. Interestingly, the information from the Ocean data
also improves the Atmos variable significantly. After a few
data-assimilation windows, we have recovered the Atmos
variable as is clear from the residuals in Fig. 13. Note that
we have a relatively high density of Ocean measurements
in space and time to resolve the scales in the Ocean model
variable. In this case, the Atmos solution’s recovery re-
sults from the coupled data assimilation. In contrast, the
results of Exp. KS-MDA-5-Osep illustrate that when we
only update the Ocean variables when assimilating Ocean
data, we see hardly any impact on the Atmos variable, and
we also observe worsening Ocean results.

The situation differs from the alternative case, KS-
MDA-5-A, where we only assimilate Atmos data. We ob-
tained good convergence for the large-scale Atmos model,
but with the correct spatial resolution in the data, we would
need more information to control the Ocean model. We
see some impact of the assimilation in the Ocean variable
in Fig. 9 where we recover the Ocean’s “large-scale” struc-
tures and somewhat reduce the estimated standard devia-
tion. However, by comparing with Exp. KS-MDA-5-Asep
in Fig. 10, this improvement in the Ocean variable is pri-
marily due to the model coupling and dynamic interaction
between the Atmos and Ocean variables.

The difference between the combined assimilation of
Ocean and Atmos data in experiment KS-MDA-5 and the
separate assimilation of Ocean and Atmos data in experi-
ment KS-MDA-5sep emphasizes the value of the combined
assimilation. Exp. KS-MDA-5 presented in Fig. 11 con-
verges after a few assimilation windows, and we can control
the further evolution of the model ensemble. Exp. KS-
MDA-5sep shown in Fig. 12 converges much slower, and
the resulting estimate has more significant errors for the
Ocean and the Atmos variables. The residual plots in
Fig. 13 also support the conclusion that combined assimi-
lation of the Ocean and Atmos data captures the interaction
between Ocean and Atmos more accurately and can lead
to an improvement in the state estimate compared to the
results of separate assimilation for the Ocean and Atmos
variables.

5. Sensitivity study for ensemble DA methods

We will now further examine the properties of the iter-
ative ensemble smoothers with our coupled model. The
focus is not on the coupling but rather how to best con-
figure the assimilation setup for the different assimilation
methods in terms of the update strategy for the final iter-
ation or step, the length of the data-assimilation window
and impact of nonlinearity relative to the model’s pre-
dictability time, the optimal number of steps in ESMDA,
and the required number of iterations in IES. We note that
the current versions of IES and ESMDA were previously
only studied on a single window, while we will now study
them in a recursive setting, where the assimilation updates
in future assimilation windows will benefit from the up-
dates from the previous assimilation steps, and thereby a
reduced nonlinearity and a more Gaussian pdf of the prior
ensemble.

a. Window update or model rerun

From Sec. 3, we noticed that we can update the solution
at any instant over the assimilation window when using
ES. Furthermore, for an assimilation window, the update
uses the same linear combination of the prior ensemble
realizations independently of the time step we are updat-
ing. Hence, for the ES update, we can choose between
two strategies: update the solution over the whole window
or update only the assimilation window’s initial conditions
and rerun the model to obtain the solution over the en-
tire window. We will see that these two strategies lead to
significantly different results for nonlinear dynamical mod-
els, while there would be no difference for linear models
without model errors.

For ES, it is always better to update the whole win-
dow and, particularly, the end time of the window, as this
estimate becomes the initial condition for the continued
integration over the following window. The importance of
updating the whole window depends on the length of the
assimilation window relative to the model’s predictability
time. For short time windows, the error growth caused
by the nonlinear and unstable model dynamics will not
have time to impact the prediction significantly. Thus,
whether we update the window’s initial conditions or com-
pute the linear ES update over the whole window in the
short-window case does not lead to very different results.
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Fig. 7. Exp. KS-MDA-5-O: Assimilation of Ocean data and updating both the Ocean and Atmos variables.
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Fig. 8. Exp. KS-MDA-5-Osep: Same as Fig. 7 but with seperate assimilation where the Ocean data only update the Ocean variable.
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Fig. 9. Exp. KS-MDA-5-A: Assimilation of atmos data and updating both the Ocean and Atmos.
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Fig. 10. Exp. KS-MDA-5-Asep: Same as Fig. 9 but with seperate assimilation where the atmos data only update the atmos variable.
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Fig. 11. Exp. KS-MDA-5: Assimilation of Ocean and Atmos data and updating both the Ocean and Atmos.
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Fig. 12. Exp. KS-MDA-5sep: Same as Fig. 11 but with seperate assimilation for the Ocean and the Atmos variables.
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Fig. 13. The plots show the time evolution of the residuals for the KS-MDA-5 experiments listed in Tab. 1. The full lines indicate RMSE relative
to the the reference solution while the soft lines are the ensemble predicted RMSE.

However, for longer time windows, the uncertainty at the
end of the window obtained by integrating the model en-
semble from updated initial conditions typically tends to-
wards climatology, and the ensemble prediction in the next
assimilation window starts all over again from a climato-
logical level where the ensemble has forgotten all informa-
tion from previously assimilated data.

In Figs. 14 and 15, we illustrate the difference between
the two update strategies when using ES for a case with
window lengths of six and measurements every second unit
of time. We obtain a faster convergence and lower standard
deviations when we update the ensemble over the whole
window. Note that this case corresponds to computing an
EnKF (or rather an EnKS) solution, where we have used
measurements within an assimilation window to update
the ensemble at the end of the assimilation window before
continuing the integration.

ESMDA updates the assimilation window’s initial con-
ditions recursively, and following each update, we must
rerun the ensemble over the window to obtain the solution
for the current ESMDA step. This procedure increases the
ensemble spread and uncertainty over the window due to
using a nonlinear and unstable model. However, we can
control some uncertainty growth at the final update step
by calculating the ESMDA update over the whole window.
This approach avoids the final ensemble integration. In
the case of long assimilation windows, we obtain a bet-
ter estimate of the solution at the end of the assimilation
window and, thereby, a better estimate of the initial condi-

tions of the following window. Figs. 16 and 17 illustrate
how computing the solution over the whole window in the
final ESMDA step improves the estimate. In particular,
we notice a faster convergence for the Atmos variable, and
we are better at controlling the dynamic instabilities that
develop while integrating the model over the window. In
an operational weather or climate prediction setting, we
would typically update the solution at the end of the assim-
ilation window at the final ESMDA step before predicting
the solution over the following window.

The situation changes entirely in the IES as shown in
Figs. 18 and 19. Updating the solution over the whole
window in the final iteration significantly degrades the es-
timate. When using IES, we should update the initial con-
dition of the assimilation window in the final integration.
The reason ESMDA experiences an improvement, while
the IES solution degrades, from updating the solution over
the whole window in the final step or iteration is the fol-
lowing. When computing the last update in ESMDA, the
solution is a linear combination of the ensemble simula-
tions of the previous MDA step. On the other hand, in IES,
the solution is a linear combination of the prior ensemble.
Each step in ESMDA improves the initial conditions for
the assimilation window, leading to an improved ensemble
prediction over the assimilation window with lower uncer-
tainty. Thus, in the final update step, the prior ensemble is
already close to the posterior solution.

The summary in Fig. 20 clearly illustrates the above
findings. The most surprising observation from this figure
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Experiment window length num ocean obs num atmos obs Δ𝑡 ocean obs Δ𝑡 atmos obs
KS-ES-6-2 6 40 10 2 2
KS-MDA-12-5 12 40 10 5 5
KS-IES-5-2 5 40 10 2 2
KS-ES-6-2X 6 40 10 2 2
KS-MDA-12-5X 12 40 10 5 5
KS-IES-5-2X 5 40 10 2 2

Table 2. The table summarizes the experiments used for testing whether to update initial conditions or the whole ensemble over the data
assimilation window. The experiment names ending with an “X” update the initial conditions of the data-assimilation window and then rerun the
model ensemble to obtain the final solution over the window.

is that the window length used for ESMDA significantly
exceeds the one used with IES. We will see in the follow-
ing discussion that the possibility of using a standard ES
update for the final ESMDA step makes ESMDA less sen-
sitive to the window length when used in sequential data
assimilation. ESMDA also tolerates more significant er-
rors in the initial conditions of the ensemble since we can
partly correct these errors in the final ES-type update step.
Furthermore, while ESMDA computes recursive linear re-
gression updates, IES is a gradient-descent method and
becomes sensitive to substantial nonlinearities. We will
elaborate more on these topics in the following sections.

1) Ensemble Smoother sensitivity experiments

We will now examine how the ensemble smoothers per-
form when we vary the length of the assimilation win-
dows. In the case of ES, we repeat the experiments
for window lengths increasing from one to nine units of
time, and the time interval between the measurements
is two units of time for all the experiments. We have
ten and forty equally spaced measurements of the Atmos
and Ocean models at each measurement time. We de-
note the experiments KS-ES-[1-9]-2[X], where KS denotes
the Kuramoto-Sivashinksy model, ES means the ensemble
smoother, and the numbers [1-9] define the length of the
assimilation windows. Finally, an X at the end tells us
we reran the model ensemble to obtain the solution. In
contrast, the experiments without an X computed the ES
update over the whole window.

Note that the ES and the EnKF will always have identical
solutions at the end of the assimilation window; therefore,
the prior for the following window will also be the same.
We have already shown that we obtain better results from
ES when we update the solution at the end of the assim-
ilation window than when we update the window’s initial
conditions and rerun the ensemble over the window. From
the upper plots in Fig. 20, we notice that ES generally leads
to more accurate solutions when updating the solution over
the window and not rerunning the ensemble. Updating the
window’s initial conditions results in poorer performance
for all window lengths, and we can conclude that the stan-
dard EnKF with updates at the end of the assimilation
window is the way to go.

Regarding the length of the assimilation window, the
ES experiments perform well for a short window length
of two units of time. Still, the performance deteriorates
rapidly for longer assimilation windows. This worsening
of the results with increasing window length comes from
the model’s nonlinearity, which results in a prior ensemble
prediction over the window that approaches climatology
for long windows. Then, the linear update computed by
ES will break down, as previously discussed by Evensen
and Van Leeuwen (2000) in an example using the Lorenz
equations. From the upper left plot in Fig. 20, we notice
how the standard deviation over the window grows until
the simulation approaches climatology with long. The
net effect is that at the end of the assimilation window,
no predictive skill propagates forward into the following
window. So, when using ES and EnKF, we should use
short data-assimilation windows and update the solution at
the end of, or the whole, window.

2) IES sensitivity experiments

We now move on to examining IES in more detail. Sim-
ilarly to the ES experiments in the previous section, we use
the notation KS-IES-[1-15]-2[X] for the IES experiments.
With IES, we could extend the length of the assimilation
window, and we have run experiments with assimilation
window lengths up to 15 units of time. In all the experi-
ments, we used a maximum of 12 iterations, but in most
cases, we observed no improvement after about five to eight
iterations.

The plots in the second row of Fig. 23 summarize the
residuals from using IES with different assimilation win-
dow lengths. IES performs equally well for window lengths
of two to seven units of time, as seen from the right plot in
the second row of Fig. 20, and the results are significantly
better than those obtained from using ES (see upper left
panel in the figure). Thus, an iterative method has the ben-
efit of a more accurate estimate, but it comes at a higher
computational cost.

As for ES, we repeated all 15 KS-IES-[1-15]-2X exper-
iments by a set of experiments KS-IES-[1-15]-2 where we
used the IES transition matrix to update the whole win-
dow in the final iteration. However, from the residuals in
Fig. 23, it is clear that for IES, in contrast to ES, we should
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Fig. 14. Exp. KS-ES-6-2: ES with an assimilation window of length 6 time units and DA update of final solution over window.
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Fig. 15. Exp. KS-ES-6-2X: Same as Fig. 14 but with update of the window’s initial condition.
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Fig. 16. Exp. KS-MDA-12-5: ESMDA with an assimilation window of length 12 time units and DA update of final solution over window.
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Fig. 17. Exp. KS-MDA-12-5X: Same as Fig. 16 but with update of the window’s initial condition.
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Fig. 18. Exp. KS-IES-5-2: IES with an assimilation window of length 5 time units and DA update of final solution over window.
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Fig. 19. Exp. KS-IES-5-2X: Same as Fig. 18 but with update of the window’s initial condition.
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Fig. 20. The plots show the time-averaged residuals for the ES, ESMDA, and IES experiments listed in Tab. 2 as a function of window length for
the period 101-200. The full lines indicate RMSE relative to the reference solution, while the soft lines are the ensemble predicted RMSE.

rerun the model ensemble in the final iteration. We ex-
plained in Sec. 3 that IES computes the updated ensemble
of initial conditions as a linear combination of the prior en-
semble initial conditions. Furthermore, we recall that the
linear combination defined by the transition matrix leads
to a posterior ensemble prediction that minimizes the en-

semble of cost functions in Eq. (6). Thus, by computing
the posterior ensemble over the data-assimilation window
by multiplying the prior ensemble by the transition matrix,
we lose the effect of the model evolution’s nonlinearity and
cannot improve the solution this way. Note, however, that
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also here the estimates would become identical when using
a linear model.

3) ESMDA sensitivity experiments

We now apply the ESMDA method in experiments KS-
MDA-[1-15]-2[X], similar to those from the previous sec-
tion. The ESMDA formulation for the recursive data-
assimilation problem assumes that we update the initial
state and rerun the model ensemble in each step to recom-
pute the gradient. However, since ESMDA computes a se-
quence of independent ES updates, we can choose whether
to update the initial conditions for the assimilation window
or the whole solution over the window in the final ESMDA
step.

From the plots in the bottom row of Fig. 20, we no-
tice that ESMDA performs significantly better than ES in
both the case with updating the whole window and when
we rerun the model ensemble over the window. We can
extend the window length significantly compared to when
using ES, and there are hardly any differences between the
ESMDA or IES solutions for window sizes up to six. We
note, however, that the ESMDA residuals diverge from the
ensemble standard deviations for window lengths greater
than six. Thus, we cannot trust the predicted error esti-
mates for longer assimilation windows.

We also note that computing an ES update of the whole
window in the final step stabilizes the solution for longer
windows and improves the estimate, particularly for long
window lengths. This strategy also saves one ensemble
integration.

We conclude that we are less impacted by the model’s
nonlinearity when using ESMDA than when using ES, and
ESMDA has the added advantage that we can extend the
data-assimilation window significantly. We also obtained a
substantially better result with ESMDA than ES, although
at a higher computational cost for the same window length.

b. Sensitivity to number of MDA steps

The number of ESMDA steps can significantly impact
the solution (Evensen 2018; Evensen et al. 2020). Ideally,
we would like to use as few steps as possible to reduce
computational cost since every step implies a simulation of
the whole ensemble. Using around four to eight ESMDA
steps is common, but we currently have no general rule
for how many steps we need to obtain the best estimate.
We can only try a different number of steps, and when
the solution does not change within the expected sampling
errors, we can assume we have converged.

An issue is that every ESMDA step is an independent ES
update and introduces a new set of perturbed observations.
Another problem is that using a limited ensemble size in-
troduces sampling errors. In the following experiments,
we have used 1000 realizations to minimize the impact of

sampling errors, and we have used data-assimilation win-
dows of five, ten, and fifteen units of time. We ran nine
experiments using one to nine ESMDA steps, and we plot
the residuals in Fig. 21, averaged over the converged so-
lution during the last 100 units of time. The experiments
using a single step are equivalent to running ES, and it is
clear that using more than one step improves the solution.
Using two MDA steps leads to a significant improvement,
and using two to nine steps improves the estimate for the
shortest time window and results in nearly identical accu-
racy in the case with a window of five units of time. Thus,
there is no benefit of using more than two to three steps in
this case with modest nonlinearity. For the longer assim-
ilation windows of 10 and 15 units of time, we obtain the
most consistent solution using only three to seven MDA
steps, all with similar performance. We also note that ad-
ditional steps lead to divergence between the actual and
estimated residuals. In the case with an assimilation win-
dow of 15 units of time and nine MDA steps, we experience
substantial filter divergence.

Note that running experiments with a relatively small
ensemble size makes it useless to run additional ESMDA
steps if the method has already converged to a level lower
than the sampling errors resulting from the limited ensem-
ble size. A positive result from these experiments is that
we can obtain estimates with an excellent accuracy using
relatively few MDA steps.

6. Comparative performance of ensemble smoothers

Which ensemble method should we use? We can apply
the ES with an update of the whole assimilation window or
in a pure EnKF setting with an update of the final time step
of the window. However, ESMDA and IES will improve
upon the ES results in cases with significant non-linearity
at an additional computational cost.

We like the consistency of the IES performance seen in
the middle right plot of Fig. 20, where we obtain excel-
lent results, and the converged solution shows consistency
between actual and estimated residuals up to a window
length of eight units of time. On the other hand, ESMDA
converged in three to five steps for moderate assimilation
window lengths and may be more computationally efficient
than IES. ESMDA also works well with longer window
lengths due to the final MDA step, where we compute an
ES update over the whole window, which results in a higher
accuracy and lower uncertainty of the initial conditions for
the subsequent window.

In all the previous IES experiments, we ran a maxi-
mum of 12 iterations, but in most cases, IES converged
in fewer iterations. We also realize that in a sequential
data-assimilation system, the prior for each successive as-
similation window is typically rather good, so we could
reduce the number of iterations in IES without sacrific-
ing the quality of the results. We also tested IES on the
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Fig. 21. The plots show time-averaged residuals for the ESMDA as a function of the number of MDA steps for three different window lengths
of 5, 10, and 15 units of time for the period 101-200. The full lines indicate RMSE relative to the reference solution, while the soft lines are the
ensemble predicted RMSE.

cases KS-IES-[2-6]-2X using a maximum of four iterations
for each update, which in computational cost corresponds
to running ESMDA with five steps since ESMDA avoids
the final ensemble integration by updating the ensemble
over the whole assimilation window in the last step. We
note that the final ES update used in ESMDA helps con-
trol nonlinear instabilities and leads to an improved initial
condition for the following window.

In Fig. 22, we compare the time series of residuals for
the IES (KS-IES-[2-6]-2X), IES with four iterations (KS-
IES4-[2-6]-2X), and the default case of ESMDA with five
steps (KS-MDA-[2-6]-2) for the window lengths where we
observed the methods to work well. We cannot conclude
from these plots that one configuration is significantly bet-
ter or worse than another. Furthermore, as weather pre-
diction systems use relatively short data-assimilation win-
dows compared to the weather’s predictability time limit,
we expect that both IES and ESMDA should converge to
a sufficiently accurate solution with a modest number of
iterations or steps. Fig. 23 compares the residuals from
the different cases over the time interval 101-200, where
the experiments have reached a quasi-steady accuracy level
following the initial assimilation updates. Note that using
a finite ensemble size introduces a small uncertainty. We
could have repeated the experiments with different random
seeds to obtain more robust estimates and plotted all resid-
uals with an uncertainty estimate, but this becomes more
relevant when using smaller ensemble sizes than the 1000
realizations used in all the experiments in this paper.

An additional sensitivity study would involve varying
ensemble sizes. We have decided to exclude such a study
in this paper since it would also include using localization
methods. We have left such a study for future work.

In addition to the actual performance issues, there could
also be preferences regarding the theoretical formulations
of the different techniques, i.e., direct RML sampling of the
posterior in IES and gradual transport of the prior towards
the posterior using RML sampling and ES for the short
linear update steps in ESMDA. IES introduces significant
errors through the RML sampling in nonlinear systems.

Could we assume that ESMDA solves for minuscule ES
updates that introduce Gaussianity into the next window’s
prior? The recursive-in-time updating process in sequen-
tial data assimilation may also reduce the RML sampling
approximation.

7. Summary

In this study, we have demonstrated the possibility
of using adjoint-free iterative ensemble methods for se-
quential data assimilation. We defined a coupled mul-
tiscale model system based on the nonlinear Kuramoto-
Sivashinsky model. The model system allows for examin-
ing data assimilation in multiscale dynamical systems and
models with unstable dynamics. An advantageous prop-
erty of this model is its saturation of uncertainty at a clima-
tologic level, similar to what we observe in atmospheric and
ocean models. In addition, the model is one-dimensional
in space, allowing us to represent spatial variability in the
model. In addition to demonstrating the importance and
value of coupled data-assimilation updates, we have stud-
ied the properties of iterative ensemble smoothers. The
joint assimilation of data for a model operating at different
physical scales and with collective updates of both model
components yields superior results compared to treating
the model components and data independently. In par-
ticular, we demonstrate the importance of assimilating
measurements from the component with the small spa-
tial scales into the coupled system for reconstructing the
component with the large spatial scales. We also explain
the similarity between ensemble 4DVar and our iterative
smoothers. The main differences include the replacement
of the tangent-linear operator with an ensemble-averaged
model sensitivity, which eliminates the use of adjoint mod-
els and backward integrations. Additionally, we represent
all covariance matrices with an ensemble of model real-
izations. We demonstrated the effectiveness and efficiency
of ESMDA and IES in dealing with nonlinearities in a
coupled model. Furthermore, we illustrated the effect of
updating over the assimilation window versus updating the
window’s initial conditions in ensemble smoothers. We
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Fig. 22. The plots show the time evolution of residuals for the ensemble prediction using different window lengths for a converged IES (IES),
an IES using only four iterations (IES4), and an ESMDA with five steps (MDA5). The full lines indicate RMSE relative to the reference solution,
while the soft lines are the ensemble predicted RMSE.
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Fig. 23. The plots show time-averaged residuals for the IESX, IES4X, and ESMDA experiments as a function of window length for the period
101-200. The full lines indicate RMSE relative to the reference solution, while the soft lines are the ensemble predicted RMSE.

believe the methods and formulations discussed in the pa-
per, formulated initially for petroleum applications, will
be valuable for future data-assimilation systems for atmo-
spheric, oceanic, and other coupled earth-system models.
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