

An ensemble approach to study association between metastasis and high interstitial fluid pressure in pancreatic cancer

> Geir Nævdal, NORCE e-mail: gena@norceresearch.no

> > January 24, 2023

Fluid-sensitive migration mechanisms predict association between metastasis and high interstitial fluid pressure in pancreatic cancer

Geir Nævdal^a, Einar K. Rofstad^b, Kjetil Søreide^{c,d,e}, Steinar Evje^{f,*}

^a NORCE Norwegian Research Centre AS, Bergen, Norway

^b Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway

- ^c Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- ^d Department of Clinical Medicine, University of Bergen, Norway
- e Gastrointestinal Translational Research Group, Laboratory for Molecular medicine, Stavanger University Hospital, Norway
- ^f Faculty of Science and Technology, Group of Computational Engineering, University of Stavanger, Norway

https://doi.org/10.1016/j.jbiomech.2022.111362

- Data: From preclinical "models" of human pancreatic ductal adenocarcinoma (PDAC)
- Model: Mathematical model developed by Evje & co-workers
- Study done using an ensemble of in silico tumors

Pancreatic cancer

- Less than 8% survival rate after 5 years
- ▶ Number of new cases in Norway 2020: \approx 1000
 - (of \approx 36000 cancer cases)
- Most common form: Pancreatic ductal adenocarcinomas (PDAC)
- Treatment: Surgery

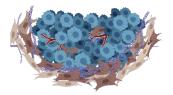
Numbers from

https://www.kreftregisteret.no/globalassets/ cancer-in-norway/2021/cin_report.pdf

https://kreftlex.no/Bukspyttkjertel

Preclinical data¹

- Based on xenografts
 - Xeno: "stranger", "guest"
 - Graft: "transplant"
- Intramuscular BxPC-3 & Capan-2 PDAC xenografts as preclinical tumor models
- Tumor grows to certain size before observations
 - Interstitial fluid pressure (IFP)
 - Microvascular density
 - Counting metastatic lymph nodes (of 6 pairs)
- 20 tumors of each model


¹Lise Mari K. Andersen et al. "Lymph node metastasis and the physicochemical micro-environment of pancreatic ductal adenocarcinoma xenografts". In: *Oncotarget* 8.29 (May 2017), pp. 48060–48074. DOI: 10.18632/oncotarget.18231.

- Model developed by Evje and his former PhD student Waldeland
- Here: A version of the model being as simple as possible explaining the data

Tumor microenvironment Mass balance

- Extracellular matrix
- 🛩 Vascular system
 - Cancer-associated fibroblasts (CAFs)
- α_{c}, α_{w} : volume fraction of cell and fluid
- **u**_c,**u**_w: interstitial cell and fluid velocity
- Q_v, Q_l: transvascular flux related to blood and lymphatic vessels

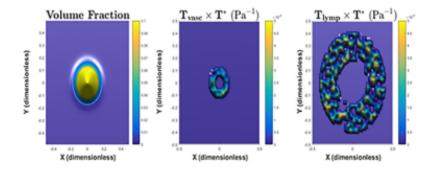

 $\begin{aligned} & (\alpha_c)_t + \nabla \cdot (\alpha_c \mathbf{u}_c) = \mathbf{0} \\ & (\alpha_w)_t + \nabla \cdot (\alpha_w \mathbf{u}_w) = \mathbf{Q} \\ & \mathbf{Q} = \mathbf{Q}_v - \mathbf{Q}_l \\ & \alpha_c + \alpha_w = \mathbf{1} \end{aligned}$

Figure based on Fig. 1

in Barrett & Purè [3].

Physiochemical microenvironment

$$Q_v = T_v (ilde{P}_v^* - P_w)$$

 $Q_l = T_l (P_w - ilde{P}_l^*)$

Tumor microenvironment Momentum balance

Tumor cells

Extracellular matrix

Y Vascular system

Cancer-associated fibroblasts (CAFs)

 $\alpha_c \nabla (P_w + \Delta P_{cw} + \Lambda_c) = -\zeta_c \mathbf{u}_c + \zeta_{cw} (\mathbf{u}_w - \mathbf{u}_c)$ $\alpha_{W}\nabla P_{W} = -\zeta_{W}\mathbf{u}_{W} + \zeta_{CW}(\mathbf{u}_{C} - \mathbf{u}_{W})$

Pw: $\Delta P_{cw}(\alpha_c)$: Λ_{C}

interstitial fluid pressure effect of elevated cell phase pressure chemotaxis $\zeta_w (= I_w k_w \alpha_w^{r_w}), \zeta_c, \zeta_{cw}$: fluid-ECM and cell-ECM resistance and cell-fluid interaction

Summary of model

$$\mathbf{u}_{c} = \frac{f_{c}(\alpha_{c})}{\alpha_{c}} \mathbf{U}_{T} - \frac{h(\alpha_{c})}{\alpha_{c}} \nabla(\Delta P_{cw}) - \frac{h_{c}(\alpha_{c})}{\alpha_{c}} \nabla \Lambda_{c}$$
$$\mathbf{U}_{T} = \alpha_{c} \mathbf{u}_{c} + \alpha_{w} \mathbf{u}_{w}$$

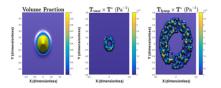
- (i) Fluid-generated stress giving upstream migration
- (ii) Diffusive migration
- (iii) Chemotaxis of cells toward higher concentration of chemokine

Novelties of the paper

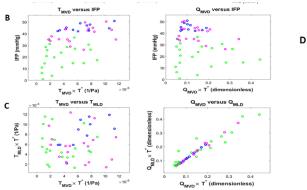
- Represent the unknown stochastic intratumoral vasculature as well as the collecting peritumoral lymphatic network in an appropriate form
- Show that the two competing fluid-sensitive migration mechanisms, when exposed to a realistic fluid velocity field, have the ability to create aggressive behavior
- Verify that this aggressive behavior, in terms of number of isolated islands that are formed, in fact are correlated to higher IFP

Unknown parameters Ensemble of models

Three spatial varying fields


- Constant: k_w (description of fluid-ECM resistance (ECM density))
- Gaussian variogram: T_v (describing density and position of microvascular vessels)
- Gaussian variogram: T₁ (describing density and position of peritumoral lymphatics)
- The fields are stochastically independent

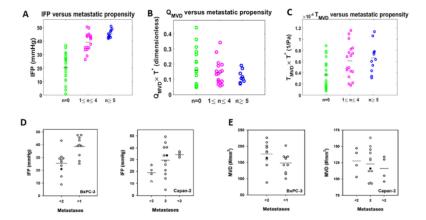
Results of simulations



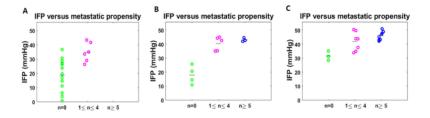
Measures

- Number of isolated islands of cancer cells $n \approx \overline{N} = \int_0^T N(s) \, ds$
- Interstitial fluid pressure $(IFP = \max_{\Omega} P_w(\mathbf{x}))$
- ► Fluid produced from intratumoral vascular system $Q_{MVD} = \int_{\Omega_{vasc}} T_v(\mathbf{x}) (\tilde{P}_v^* - P_w) d\mathbf{x}$
- "Density" of vascular network $T_{MVD} = \int_{\Omega_{vasc}} T_v(\mathbf{x}) d\mathbf{x}$
- ► Fluid produced through peritumoral lymphatic system $Q_{MLD} = \int_{\Omega_{Vasc}} T_l(\mathbf{x}) (P_w - \tilde{P}_l^*) d\mathbf{x}$
- "Density" of lymphatic network $T_{MLD} = \int_{\Omega_{lymp}} T_l(\mathbf{x}) d\mathbf{x}$

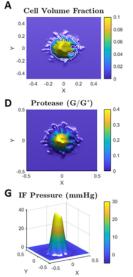
Results IFP, T_{MVD} , Q_{MVD} , T_{MLD} , Q_{MLD}

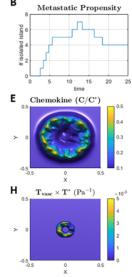


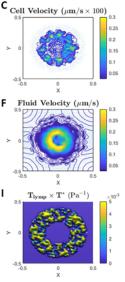
RCE


Green: Non-metastatic (n = 0). Pink: Medium metastatic propensity ($1 \le n \le 4$). Blue: High metastatic propensity ($n \ge 5$)

Results Metastatic propensity

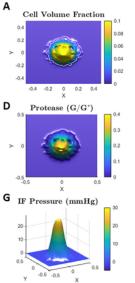

Results **N R C E** Metastatic propensity vs. varying ECM density

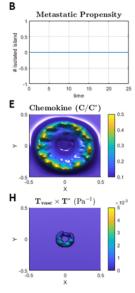


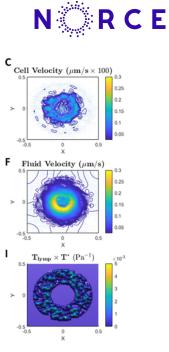

A: Sparse ECM $(1 \le k_w \le 11)$. B: Medium ECM $(11 < k_w < 19)$ C: Dense ECM: $(19 \le k_w \le 30)$

Results

N C E Sparse ECM with medium metastatic propensity

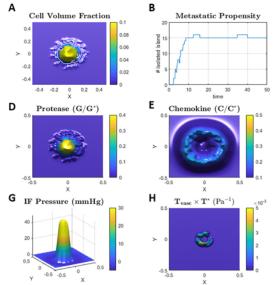


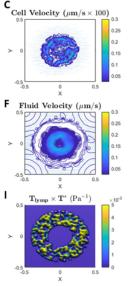




Results

Sparse ECM - non-metastatic





Results

N R C E Dense ECM with high metastatic propensity

Conclusions

- Similarities with preclinical study [2]
 - No correlation between IFP and amount of leaked fluid
 - No association between amount of leaked fluid and metastatic propensity
 - Clear association between high IFP and metastatic propensity
- High ECM density gave most aggressive tumors
- Other cancers with similar behavior: cervic cancer, breast cancer, melanoma, and brain cancer
- Potential further work: Combine with data assimilation for better characterization and potential simulation of drug delivery

References

- Geir Nævdal et al. "Fluid-sensitive migration mechanisms predict association between metastasis and high interstitial fluid pressure in pancreatic cancer". In: *Journal of Biomechanics* 145 (Dec. 2022), p. 111362. DOI: 10.1016/j.jbiomech.2022.111362.
- Lise Mari K. Andersen et al. "Lymph node metastasis and the physicochemical micro-environment of pancreatic ductal adenocarcinoma xenografts". In: Oncotarget 8.29 (May 2017), pp. 48060–48074. DOI: 10.18632/oncotarget.18231.
- [3] Richard Lee Barrett and Ellen Puré. "Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy". In: *eLife* (2020). DOI: 10.7554/eLife.57243.