Correlation-Based Localization

Implementation and Analysis with a Reservoir Model

Geir Evensen

Background

- Anderson (2007); Bishop and Hodyss (2007); Fertig et al. (2007) The original papers on correlation-based localization.
- Evensen (2009) Correlation-based localization in EnKF for linear advection equation.
- Luo and Bhakta (2020); Luo et al. (2019) Digires using Luo-IES with Norne?
- Neto et al. (2021) Digires using subspace EnRML with field model from Petrobras.
- Soares et al. (2021) Digires using Luo-IES (from Luo) with Norne?
- Le et al. (2016) Adaptive ESMDA.

I find that these papers don't provide a very deep analysis.

Problem definition

- The Digires papers were positive to correlation-based localization.
- Remus wanted to test correlation-based localization in ERT.
- \rightarrow Implementation project with Equinor.

Approach

ERT solves for the ensemble update

$$\mathbf{X}^{\mathbf{a}} = \mathbf{X}^{\mathbf{f}} \mathbf{T}.$$
 (1)

· Local analysis computes the update one row at the time

$$\mathbf{X}_{i}^{\mathrm{a}} = \mathbf{X}_{i}^{\mathrm{f}} \mathbf{T}_{i} \tag{2}$$

- One parameter: correlation trucation value.
- No tapering (yet).
- https://github.com/equinor/iterative_ensemble_smoother
- https://github.com/equinor/ert

Why do we need localization?

- Everybody else uses localization, and Patrick says it is necessary.
- We cannot afford to run a sufficiently large ensemble.
- We need a larger ensemble space to fit all the information in the data.
- We need to reduce the impact of spurious correlations as they lead to underestimated variance.
- We will likely get better results with localization.

Why not distance-based localization?

- ERT already has a distance-based localization scheme (it is intricate to use, though).
- Correlation-based localization would be easier to use if it works.

ERT Menu

ERT - config.ert									
V	iew <u>H</u> elp								
	Create plot Export data	■, Run workflow	عر Nanage cases	B Plugins	f⇔ Run analysis	丘 Load results mar	nually Eve	¢ ent vie	wer
	Simulation mode: Ensem	ble smoother			•	Start simulatio	n		
	Current case:	default						Ŧ	
	Runpath: Number of realizations:	/home/AD.NORCERESEARCH.NO/geev/ERT/simESMDAL2/real-%d/it-%d 100							
	Target case: Analysis module:	ESout							
		/		Edit variables 🛛 😣					
	Active realizations	0-99	lr 0. 1. 2.	version al Exact inver Subspace i Subspace i	gorithm rsion with diago inversion with ex inversion using R	nal R=I kact R ==EE'	Ø	*	l
Configuration summary Forward models COPY FILE MULTFLT			meters A	Singular value truncation Adaptive localization Adaptive localization correlation threshold			0.980000 ✓ 0.200000	÷	0 2
	flow -	POR	0	-	WC	SPR:OP_5 DPR:OP_1	Clo	se	

Truncation scheme (100 realizations)

Fisher transformation

REEK

Example porosity mean, Layer 3

Example porosity std dev, Layer 3

Example porosity real-1, Layer 3

ESMDA1000

ESMDA100

ESMDA100L20

Conclusion

- Correlation-based localization results in a good fit to the data.
- It retains more of the ensemble variance.
- Minimal update to the prior that leads to a history match.
- I would be more comfortable by increasing the ensemble size.
- The physical correlations have a magnitude similar to the sampling errors (100 realizations).
- Ongoing work and we need to analyze more.

- Anderson, J. L. Exploring the need for localization in the ensemble data assimilation sing **R C E** hierarchical ensemble filter. *Physica D*, 230:99–111, 2007. doi:10.1016/j.physd.2006.02.011.
- Bishop, C. H. and D. Hodyss. Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Q. J. R. Meteorol. Soc., 133:2029–2044, 2007. doi:10.1002/qj.169.
- Evensen, G. *Data Assimilation: The Ensemble Kalman Filter*. Springer, 2nd edition, 2009. doi:10.1007/978-3-642-03711-5.
- Fertig, E. J., B. R. Hunt, E. Ott, and I. Szunyogh. Assimilating non-local observations with a local ensemble Kalman filter. *Tellus, Ser. A*, 59:719–730, 2007. doi:10.1111/j.1600-0870.2007.00260.x.
- Le, D. H., A. A. Emerick, and A. C. Reynolds. An adaptive ensemble smoother with multiple data assimilation for assisted history matching. *SPE Journal*, 21(6):2195–2207, 2016. doi:10.2118/173214-PA.
- Luo, X. and T. Bhakta. Automatic and adaptive localization for ensemble-based history matching. *Journal of Petroleum Science and Engineering*, 184:106559, 2020. ISSN 0920-4105. doi:10.1016/j.petrol.2019.106559.
- Luo, X., R. J. Lorentzen, R. Valestrand, and G. Evensen. Correlation-based adaptive localization for ensemble-based history matching: Applied to the Norne field case study. SPE Res Eval & Eng, 22(3):1084–1109, 2019. doi:10.2118/191305-PA.

- Neto, G. M. S., R. V. Soares, G. Evensen, A. Davolioa, and D. J. Schiozer. Subspace C E randomized maximum likelihood with local analysis for time-lapse-seismic-data assimilation. SPE Journal, 26(2):1011–1031, 2021, doi:10.2118/205029-PA.
- Soares, R. V., X. Luo, G. Evensen, and T. Bahkta. Handling big models and big datasets in history matching problems through local analysis. SPE Journal, 26(2):973–992, 2021. doi:10.2118/204221-PA